summaryrefslogtreecommitdiff
path: root/scripts/spectrogram.lua
blob: 980a308f959d0296aee2387fd3a59578096e1e15 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
ardour {
	["type"]    = "dsp",
	name        = "Inline Spectrogram",
	category    = "Visualization",
	license     = "GPLv2",
	author      = "Robin Gareus",
	email       = "robin@gareus.org",
	site        = "http://gareus.org",
	description = [[An Example DSP Plugin to display a spectrom on the mixer strip]]
}

-- return possible i/o configurations
function dsp_ioconfig ()
	-- -1, -1 = any number of channels as long as input and output count matches
	return { [1] = { audio_in = -1, audio_out = -1}, }
end

function dsp_params ()
	return
	{
		{ ["type"] = "input", name = "Logscale", min = 0, max = 1, default = 0, toggled = true },
		{ ["type"] = "input", name = "1/f scale", min = 0, max = 1, default = 1, toggled = true },
		{ ["type"] = "input", name = "FFT Size", min = 0, max = 4, default = 3, enum = true, scalepoints =
			{
				["512"]  = 0,
				["1024"] = 1,
				["2048"] = 2,
				["4096"] = 3,
				["8192"] = 4,
			}
		},
		{ ["type"] = "input", name = "Height (Aspect)", min = 0, max = 3, default = 1, enum = true, scalepoints =
			{
				["Min"] = 0,
				["16:10"] = 1,
				["1:1"] = 2,
				["Max"] = 3
			}
		},
		{ ["type"] = "input", name = "Range", min = 20, max = 160, default = 60, unit="dB"},
		{ ["type"] = "input", name = "Offset", min = -40, max = 40, default = 0, unit="dB"},
	}
end

function dsp_init (rate)
	-- global variables (DSP part only)
	samplerate = rate
	bufsiz = 2 * rate
	dpy_hz = rate / 25
	dpy_wr = 0
end

function dsp_configure (ins, outs)
	-- store configuration in global variable
	audio_ins = ins:n_audio ()
	-- allocate shared memory area, ringbuffer between DSP/GUI
	self:shmem ():allocate (4 + bufsiz)
	self:shmem ():clear ()
	self:shmem ():atomic_set_int (0, 0)
	local cfg = self:shmem ():to_int (1):array ()
	cfg[1] = samplerate
	cfg[2] = bufsiz
end

function dsp_runmap (bufs, in_map, out_map, n_samples, offset)
	local shmem = self:shmem ()
	local write_ptr = shmem:atomic_get_int (0)

	-- sum channels, copy to ringbuffer
	for c = 1,audio_ins do
		-- Note: lua starts counting at 1, ardour's ChanMapping::get() at 0
		local ib = in_map:get (ARDOUR.DataType ("audio"), c - 1) -- get id of mapped input buffer for given cannel
		local ob = out_map:get (ARDOUR.DataType ("audio"), c - 1) -- get id of mapped output buffer for given cannel
		if (ib ~= ARDOUR.ChanMapping.Invalid) then
			-- check ringbuffer wrap-around
			if (write_ptr + n_samples < bufsiz) then
				if c == 1 then
					ARDOUR.DSP.copy_vector (shmem:to_float (4 + write_ptr), bufs:get_audio (ib):data (offset), n_samples)
				else
					ARDOUR.DSP.mix_buffers_no_gain (shmem:to_float (4 + write_ptr), bufs:get_audio (ib):data (offset), n_samples)
				end
			else
				local w0 = bufsiz - write_ptr
				if c == 1 then
					ARDOUR.DSP.copy_vector (shmem:to_float (4 + write_ptr), bufs:get_audio (ib):data (offset), w0)
					ARDOUR.DSP.copy_vector (shmem:to_float (4)            , bufs:get_audio (ib):data (offset + w0), n_samples - w0)
				else
					ARDOUR.DSP.mix_buffers_no_gain (shmem:to_float (4 + write_ptr), bufs:get_audio (ib):data (offset), w0)
					ARDOUR.DSP.mix_buffers_no_gain (shmem:to_float (4)            , bufs:get_audio (ib):data (offset + w0), n_samples - w0)
				end
			end
			-- copy data to output (if not processing in-place)
			if (ob ~= ARDOUR.ChanMapping.Invalid and ib ~= ob) then
				ARDOUR.DSP.copy_vector (bufs:get_audio (ob):data (offset), bufs:get_audio (ib):data (offset), n_samples)
			end
		else
			-- invalid (unconnnected) input
			if (write_ptr + n_samples < bufsiz) then
				ARDOUR.DSP.memset (shmem:to_float (4 + write_ptr), 0, n_samples)
			else
				local w0 = bufsiz - write_ptr
				ARDOUR.DSP.memset (shmem:to_float (4 + write_ptr), 0, w0)
				ARDOUR.DSP.memset (shmem:to_float (4)            , 0, n_samples - w0)
			end
		end
	end

	-- normalize  1 / channel-count
	if audio_ins > 1 then
		if (write_ptr + n_samples < bufsiz) then
			ARDOUR.DSP.apply_gain_to_buffer (shmem:to_float (4 + write_ptr), n_samples, 1 / audio_ins)
		else
			local w0 = bufsiz - write_ptr
			ARDOUR.DSP.apply_gain_to_buffer (shmem:to_float (4 + write_ptr), w0, 1 / audio_ins)
			ARDOUR.DSP.apply_gain_to_buffer (shmem:to_float (4)            , n_samples - w0, 1 / audio_ins)
		end
	end

	-- clear unconnected inplace buffers
	for c = 1,audio_ins do
		local ib = in_map:get (ARDOUR.DataType ("audio"), c - 1) -- get id of mapped input buffer for given cannel
		local ob = out_map:get (ARDOUR.DataType ("audio"), c - 1) -- get id of mapped output buffer for given cannel
		if (ib == ARDOUR.ChanMapping.Invalid and ob ~= ARDOUR.ChanMapping.Invalid) then
			bufs:get_audio (ob):silence (n_samples, offset)
		end
	end

	write_ptr = (write_ptr + n_samples) % bufsiz
	shmem:atomic_set_int (0, write_ptr)

	-- emit QueueDraw every FPS
	-- TODO: call every window-size worth of samples, at most every FPS
	dpy_wr = dpy_wr + n_samples
	if (dpy_wr > dpy_hz) then
		dpy_wr = dpy_wr % dpy_hz
		self:queue_draw ()
	end
end

----------------------------------------------------------------
-- GUI

local fft = nil
local read_ptr = 0
local line = 0
local img = nil
local fft_size = 0
local last_log = false

function render_inline (ctx, w, max_h)
	local ctrl = CtrlPorts:array () -- get control port array (read/write)
	local shmem = self:shmem () -- get shared memory region
	local cfg = shmem:to_int (1):array () -- "cast" into lua-table
	local rate = cfg[1]
	local buf_size = cfg[2]

	if buf_size == 0 then
		return
	end

	-- get settings
	local logscale = ctrl[1] or 0; logscale = logscale > 0 -- x-axis logscale
	local pink = ctrl[2] or 0; pink = pink > 0 -- 1/f scale
	local fftsizeenum = ctrl[3] or 3 -- fft-size enum
	local hmode = ctrl[4] or 1 -- height mode enum
	local dbrange = ctrl[5] or 60
	local gaindb = ctrl[6] or 0

	local fftsize
	if fftsizeenum == 0 then fftsize = 512
	elseif fftsizeenum == 1 then fftsize = 1024
	elseif fftsizeenum == 2 then fftsize = 2048
	elseif fftsizeenum == 4 then fftsize = 8192
	else fftsize = 4096
	end

	if fftsize ~= fft_size then
		fft_size = fftsize
		fft = nil
	end

	if dbrange < 20 then dbrange = 20; end
	if dbrange > 160 then dbrange = 160; end
	if gaindb < -40 then dbrange = -40; end
	if gaindb >  40 then dbrange =  40; end


	if not fft then
		fft = ARDOUR.DSP.FFTSpectrum (fft_size, rate)
	end

	if last_log ~= logscale then
		last_log = logscale
		img = nil
		line = 0
	end

	-- calc height
	if hmode == 0 then
		h = math.ceil (w * 10 / 16)
		if (h > 44) then
			h = 44
		end
	elseif (hmode == 2) then
		h = w
	elseif (hmode == 3) then
		h = max_h
	else
		h = math.ceil (w * 10 / 16)
	end
	if (h > max_h) then
		h = max_h
	end

	-- re-create image surface
	if not img or img:get_width() ~= w or img:get_height () ~= h then
		img = Cairo.ImageSurface (Cairo.Format.ARGB32, w, h)
		line = 0
	end
	local ictx = img:context ()

	local bins = fft_size / 2 - 1 -- fft bin count
	local bpx = bins / w  -- bins per x-pixel (linear)
	local fpb = rate / fft_size -- freq-step per bin
	local f_e = rate / 2 / fpb -- log-scale exponent
	local f_b = w / math.log (fft_size / 2) -- inverse log-scale base
	local f_l = math.log (fft_size / rate) * f_b -- inverse logscale lower-bound

	-- available samples in ring-buffer
	local write_ptr = shmem:atomic_get_int (0)
	local avail = (write_ptr + buf_size - read_ptr) % buf_size

	while (avail >= fft_size) do
		-- process one line / buffer
		if read_ptr + fft_size < buf_size then
			fft:set_data_hann (shmem:to_float (read_ptr + 4), fft_size, 0)
		else
			local r0 = buf_size - read_ptr
			fft:set_data_hann (shmem:to_float (read_ptr + 4), r0, 0)
			fft:set_data_hann (shmem:to_float (4), fft_size - r0, r0)
		end

		fft:execute ()

		read_ptr = (read_ptr + fft_size) % buf_size
		avail = (write_ptr + buf_size - read_ptr ) % buf_size

		-- draw spectrum
		assert (bpx >= 1)

		-- scroll
		if line == 0 then line = h - 1; else line = line - 1; end

		-- clear this line
		ictx:set_source_rgba (0, 0, 0, 1)
		ictx:rectangle (0, line, w, 1)
		ictx:fill ()

		for x = 0, w - 1 do
			local pk = 0
			local b0, b1
			if logscale then
				-- 20 .. 20k
				b0 = math.floor (f_e ^ (x / w))
				b1 = math.floor (f_e ^ ((x + 1) / w))
			else
				b0 = math.floor (x * bpx)
				b1 = math.floor ((x + 1) * bpx)
			end

			if b1 >= b0 and b1 <= bins and b0 >= 0 then
				for i = b0, b1 do
					local level = gaindb + fft:power_at_bin (i, pink and i or 1) -- pink ? i : 1
					if level > -dbrange then
						local p = (dbrange + level) / dbrange
						if p > pk then pk = p; end
					end
				end
			end
			if pk > 0.0 then
				if pk > 1.0 then pk = 1.0; end
				ictx:set_source_rgba (ARDOUR.LuaAPI.hsla_to_rgba (.70 - .72 * pk, .9, .3 + pk * .4));
				ictx:rectangle (x, line, 1, 1)
				ictx:fill ()
			end
		end
	end

	-- copy image surface
	if line == 0 then
		img:set_as_source (ctx, 0, 0)
		ctx:rectangle (0, 0, w, h)
		ctx:fill ()
	else
		local yp = h - line - 1;
		img:set_as_source (ctx, 0, yp)
		ctx:rectangle (0, yp, w, line)
		ctx:fill ()

		img:set_as_source (ctx, 0, -line)
		ctx:rectangle (0, 0, w, yp)
		ctx:fill ()
	end


	-- draw grid on top
	function x_at_freq (f)
		if logscale then
			return f_l + f_b * math.log (f)
		else
			return 2 * w * f / rate;
		end
	end

	function grid_freq (f)
		-- draw vertical grid line
		local x = .5 + math.floor (x_at_freq (f))
		ctx:move_to (x, 0)
		ctx:line_to (x, h)
		ctx:stroke ()
	end

	-- draw grid on top
	local dash3 = C.DoubleVector ()
	dash3:add ({1, 3})
	ctx:set_line_width (1.0)
	ctx:set_dash (dash3, 2) -- dotted line
	ctx:set_source_rgba (.5, .5, .5, .8)
	grid_freq (100)
	grid_freq (1000)
	grid_freq (10000)
	ctx:unset_dash ()

	return {w, h}
end