summaryrefslogtreecommitdiff
path: root/libs/fluidsynth/src/fluid_conv.c
blob: 1a790cfbfbd3946170efc43d64781333652b54eb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
/* FluidSynth - A Software Synthesizer
 *
 * Copyright (C) 2003  Peter Hanappe and others.
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Library General Public License
 * as published by the Free Software Foundation; either version 2 of
 * the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Library General Public License for more details.
 *
 * You should have received a copy of the GNU Library General Public
 * License along with this library; if not, write to the Free
 * Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
 * 02110-1301, USA
 */

#include "fluid_conv.h"


/* conversion tables */
fluid_real_t fluid_ct2hz_tab[FLUID_CENTS_HZ_SIZE];
fluid_real_t fluid_cb2amp_tab[FLUID_CB_AMP_SIZE];
fluid_real_t fluid_atten2amp_tab[FLUID_ATTEN_AMP_SIZE];
fluid_real_t fluid_posbp_tab[128];
fluid_real_t fluid_concave_tab[128];
fluid_real_t fluid_convex_tab[128];
fluid_real_t fluid_pan_tab[FLUID_PAN_SIZE];

/*
 * void fluid_synth_init
 *
 * Does all the initialization for this module.
 */
void
fluid_conversion_config(void)
{
  int i;
  double x;

  for (i = 0; i < FLUID_CENTS_HZ_SIZE; i++) {
    fluid_ct2hz_tab[i] = (fluid_real_t) pow(2.0, (double) i / 1200.0);
  }

  /* centibels to amplitude conversion
   * Note: SF2.01 section 8.1.3: Initial attenuation range is
   * between 0 and 144 dB. Therefore a negative attenuation is
   * not allowed.
   */
  for (i = 0; i < FLUID_CB_AMP_SIZE; i++) {
    fluid_cb2amp_tab[i] = (fluid_real_t) pow(10.0, (double) i / -200.0);
  }

  /* NOTE: EMU8k and EMU10k devices don't conform to the SoundFont
   * specification in regards to volume attenuation.  The below calculation
   * is an approx. equation for generating a table equivelant to the
   * cb_to_amp_table[] in tables.c of the TiMidity++ source, which I'm told
   * was generated from device testing.  By the spec this should be centibels.
   */
  for (i = 0; i < FLUID_ATTEN_AMP_SIZE; i++) {
    fluid_atten2amp_tab[i] = (fluid_real_t) pow(10.0, (double) i / FLUID_ATTEN_POWER_FACTOR);
  }

  /* initialize the conversion tables (see fluid_mod.c
     fluid_mod_get_value cases 4 and 8) */

  /* concave unipolar positive transform curve */
  fluid_concave_tab[0] = 0.0;
  fluid_concave_tab[127] = 1.0;

  /* convex unipolar positive transform curve */
  fluid_convex_tab[0] = 0;
  fluid_convex_tab[127] = 1.0;
  x = log10(128.0 / 127.0);

  /* There seems to be an error in the specs. The equations are
     implemented according to the pictures on SF2.01 page 73. */

  for (i = 1; i < 127; i++) {
    x = -20.0 / 96.0 * log((i * i) / (127.0 * 127.0)) / log(10.0);
    fluid_convex_tab[i] = (fluid_real_t) (1.0 - x);
    fluid_concave_tab[127 - i] = (fluid_real_t) x;
  }

  /* initialize the pan conversion table */
  x = PI / 2.0 / (FLUID_PAN_SIZE - 1.0);
  for (i = 0; i < FLUID_PAN_SIZE; i++) {
    fluid_pan_tab[i] = (fluid_real_t) sin(i * x);
  }
}

/*
 * fluid_ct2hz
 */
fluid_real_t
fluid_ct2hz_real(fluid_real_t cents)
{
  if (cents < 0)
    return (fluid_real_t) 1.0;
  else if (cents < 900) {
    return (fluid_real_t) 6.875 * fluid_ct2hz_tab[(int) (cents + 300)];
  } else if (cents < 2100) {
    return (fluid_real_t) 13.75 * fluid_ct2hz_tab[(int) (cents - 900)];
  } else if (cents < 3300) {
    return (fluid_real_t) 27.5 * fluid_ct2hz_tab[(int) (cents - 2100)];
  } else if (cents < 4500) {
    return (fluid_real_t) 55.0 * fluid_ct2hz_tab[(int) (cents - 3300)];
  } else if (cents < 5700) {
    return (fluid_real_t) 110.0 * fluid_ct2hz_tab[(int) (cents - 4500)];
  } else if (cents < 6900) {
    return (fluid_real_t) 220.0 * fluid_ct2hz_tab[(int) (cents - 5700)];
  } else if (cents < 8100) {
    return (fluid_real_t) 440.0 * fluid_ct2hz_tab[(int) (cents - 6900)];
  } else if (cents < 9300) {
    return (fluid_real_t) 880.0 * fluid_ct2hz_tab[(int) (cents - 8100)];
  } else if (cents < 10500) {
    return (fluid_real_t) 1760.0 * fluid_ct2hz_tab[(int) (cents - 9300)];
  } else if (cents < 11700) {
    return (fluid_real_t) 3520.0 * fluid_ct2hz_tab[(int) (cents - 10500)];
  } else if (cents < 12900) {
    return (fluid_real_t) 7040.0 * fluid_ct2hz_tab[(int) (cents - 11700)];
  } else if (cents < 14100) {
    return (fluid_real_t) 14080.0 * fluid_ct2hz_tab[(int) (cents - 12900)];
  } else {
    return (fluid_real_t) 1.0; /* some loony trying to make you deaf */
  }
}

/*
 * fluid_ct2hz
 */
fluid_real_t
fluid_ct2hz(fluid_real_t cents)
{
  /* Filter fc limit: SF2.01 page 48 # 8 */
  if (cents >= 13500){
    cents = 13500;             /* 20 kHz */
  } else if (cents < 1500){
    cents = 1500;              /* 20 Hz */
  }
  return fluid_ct2hz_real(cents);
}

/*
 * fluid_cb2amp
 *
 * in: a value between 0 and 960, 0 is no attenuation
 * out: a value between 1 and 0
 */
fluid_real_t
fluid_cb2amp(fluid_real_t cb)
{
  /*
   * cb: an attenuation in 'centibels' (1/10 dB)
   * SF2.01 page 49 # 48 limits it to 144 dB.
   * 96 dB is reasonable for 16 bit systems, 144 would make sense for 24 bit.
   */

  /* minimum attenuation: 0 dB */
  if (cb < 0) {
    return 1.0;
  }
  if (cb >= FLUID_CB_AMP_SIZE) {
    return 0.0;
  }
  return fluid_cb2amp_tab[(int) cb];
}

/*
 * fluid_atten2amp
 *
 * in: a value between 0 and 1440, 0 is no attenuation
 * out: a value between 1 and 0
 *
 * Note: Volume attenuation is supposed to be centibels but EMU8k/10k don't
 * follow this.  Thats the reason for separate fluid_cb2amp and fluid_atten2amp.
 */
fluid_real_t
fluid_atten2amp(fluid_real_t atten)
{
  if (atten < 0) return 1.0;
  else if (atten >= FLUID_ATTEN_AMP_SIZE) return 0.0;
  else return fluid_atten2amp_tab[(int) atten];
}

/*
 * fluid_tc2sec_delay
 */
fluid_real_t
fluid_tc2sec_delay(fluid_real_t tc)
{
  /* SF2.01 section 8.1.2 items 21, 23, 25, 33
   * SF2.01 section 8.1.3 items 21, 23, 25, 33
   *
   * The most negative number indicates a delay of 0. Range is limited
   * from -12000 to 5000 */
  if (tc <= -32768.0f) {
	  return (fluid_real_t) 0.0f;
  };
  if (tc < -12000.) {
	  tc = (fluid_real_t) -12000.0f;
  }
  if (tc > 5000.0f) {
	  tc = (fluid_real_t) 5000.0f;
  }
  return (fluid_real_t) pow(2.0, (double) tc / 1200.0);
}

/*
 * fluid_tc2sec_attack
 */
fluid_real_t
fluid_tc2sec_attack(fluid_real_t tc)
{
  /* SF2.01 section 8.1.2 items 26, 34
   * SF2.01 section 8.1.3 items 26, 34
   * The most negative number indicates a delay of 0
   * Range is limited from -12000 to 8000 */
  if (tc<=-32768.){return (fluid_real_t) 0.0;};
  if (tc<-12000.){tc=(fluid_real_t) -12000.0;};
  if (tc>8000.){tc=(fluid_real_t) 8000.0;};
  return (fluid_real_t) pow(2.0, (double) tc / 1200.0);
}

/*
 * fluid_tc2sec
 */
fluid_real_t
fluid_tc2sec(fluid_real_t tc)
{
  /* No range checking here! */
  return (fluid_real_t) pow(2.0, (double) tc / 1200.0);
}

/*
 * fluid_tc2sec_release
 */
fluid_real_t
fluid_tc2sec_release(fluid_real_t tc)
{
  /* SF2.01 section 8.1.2 items 30, 38
   * SF2.01 section 8.1.3 items 30, 38
   * No 'most negative number' rule here!
   * Range is limited from -12000 to 8000 */
  if (tc<=-32768.){return (fluid_real_t) 0.0;};
  if (tc<-12000.){tc=(fluid_real_t) -12000.0;};
  if (tc>8000.){tc=(fluid_real_t) 8000.0;};
  return (fluid_real_t) pow(2.0, (double) tc / 1200.0);
}

/*
 * fluid_act2hz
 *
 * Convert from absolute cents to Hertz
 */
fluid_real_t
fluid_act2hz(fluid_real_t c)
{
  return (fluid_real_t) (8.176 * pow(2.0, (double) c / 1200.0));
}

/*
 * fluid_hz2ct
 *
 * Convert from Hertz to cents
 */
fluid_real_t
fluid_hz2ct(fluid_real_t f)
{
  return (fluid_real_t) (6900 + 1200 * log(f / 440.0) / log(2.0));
}

/*
 * fluid_pan
 */
fluid_real_t
fluid_pan(fluid_real_t c, int left)
{
  if (left) {
    c = -c;
  }
  if (c < -500) {
    return (fluid_real_t) 0.0;
  } else if (c > 500) {
    return (fluid_real_t) 1.0;
  } else {
    return fluid_pan_tab[(int) (c + 500)];
  }
}

/*
 * fluid_concave
 */
fluid_real_t
fluid_concave(fluid_real_t val)
{
  if (val < 0) {
    return 0;
  } else if (val > 127) {
    return 1;
  }
  return fluid_concave_tab[(int) val];
}

/*
 * fluid_convex
 */
fluid_real_t
fluid_convex(fluid_real_t val)
{
  if (val < 0) {
    return 0;
  } else if (val > 127) {
    return 1;
  }
  return fluid_convex_tab[(int) val];
}