summaryrefslogtreecommitdiff
path: root/libs/canvas/canvas/interpolated_curve.h
blob: 6c5d6b04957b71df7a1b59e5bc67b8649531db7c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
/*
    Copyright (C) 2013 Paul Davis

    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program; if not, write to the Free Software
    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/

#ifndef __CANVAS_INTERPOLATED_CURVE_H__
#define __CANVAS_INTERPOLATED_CURVE_H__

#include "canvas/visibility.h"
#include "canvas/types.h"

namespace ArdourCanvas {

class LIBCANVAS_API InterpolatedCurve
{
public:
    enum SplineType {
	    CatmullRomUniform,
	    CatmullRomCentripetal,
    };

protected:

	/**
	 * This method will calculate the Catmull-Rom interpolation curve, returning
	 * it as a list of Coord coordinate objects.  This method in particular
	 * adds the first and last control points which are not visible, but required
	 * for calculating the spline.
	 *
	 * @param coordinates The list of original straight line points to calculate
	 * an interpolation from.
	 * @param points_per_segment The integer number of equally spaced points to
	 * return along each curve.  The actual distance between each
	 * point will depend on the spacing between the control points.
	 * @return The list of interpolated coordinates.
	 * @param curve_type Chordal (stiff), Uniform(floppy), or Centripetal(medium)
	 * @throws gov.ca.water.shapelite.analysis.CatmullRomException if
	 * points_per_segment is less than 2.
	 */
	static void
		interpolate (const Points& coordinates, uint32_t points_per_segment, SplineType curve_type, bool closed, Points& results)
	{
		if (points_per_segment < 2) {
			return;
		}

		// Cannot interpolate curves given only two points.  Two points
		// is best represented as a simple line segment.
		if (coordinates.size() < 3) {
			results = coordinates;
			return;
		}

		// Copy the incoming coordinates. We need to modify it during interpolation
		Points vertices = coordinates;

		// Test whether the shape is open or closed by checking to see if
		// the first point intersects with the last point.  M and Z are ignored.
		if (closed) {
			// Use the second and second from last points as control points.
			// get the second point.
			Duple p2 = vertices[1];
			// get the point before the last point
			Duple pn1 = vertices[vertices.size() - 2];

			// insert the second from the last point as the first point in the list
			// because when the shape is closed it keeps wrapping around to
			// the second point.
			vertices.insert(vertices.begin(), pn1);
			// add the second point to the end.
			vertices.push_back(p2);
		} else {
			// The shape is open, so use control points that simply extend
			// the first and last segments

			// Get the change in x and y between the first and second coordinates.
			double dx = vertices[1].x - vertices[0].x;
			double dy = vertices[1].y - vertices[0].y;

			// Then using the change, extrapolate backwards to find a control point.
			double x1 = vertices[0].x - dx;
			double y1 = vertices[0].y - dy;

			// Actaully create the start point from the extrapolated values.
			Duple start (x1, y1);

			// Repeat for the end control point.
			int n = vertices.size() - 1;
			dx = vertices[n].x - vertices[n - 1].x;
			dy = vertices[n].y - vertices[n - 1].y;
			double xn = vertices[n].x + dx;
			double yn = vertices[n].y + dy;
			Duple end (xn, yn);

			// insert the start control point at the start of the vertices list.
			vertices.insert (vertices.begin(), start);

			// append the end control ponit to the end of the vertices list.
			vertices.push_back (end);
		}

		// When looping, remember that each cycle requires 4 points, starting
		// with i and ending with i+3.  So we don't loop through all the points.

		for (Points::size_type i = 0; i < vertices.size() - 3; i++) {

			// Actually calculate the Catmull-Rom curve for one segment.
			Points r;

			_interpolate (vertices, i, points_per_segment, curve_type, r);

			// Since the middle points are added twice, once for each bordering
			// segment, we only add the 0 index result point for the first
			// segment.  Otherwise we will have duplicate points.

			if (results.size() > 0) {
				r.erase (r.begin());
			}

			// Add the coordinates for the segment to the result list.

			results.insert (results.end(), r.begin(), r.end());
		}
	}

private:
	/**
	 * Calculate the same values but introduces the ability to "parameterize" the t
	 * values used in the calculation. This is based on Figure 3 from
	 * http://www.cemyuksel.com/research/catmullrom_param/catmullrom.pdf
	 *
	 * @param p An array of double values of length 4, where interpolation
	 * occurs from p1 to p2.
	 * @param time An array of time measures of length 4, corresponding to each
	 * p value.
	 * @param t the actual interpolation ratio from 0 to 1 representing the
	 * position between p1 and p2 to interpolate the value.
	 */
	static double
		__interpolate (double p[4], double time[4], double t)
	{
		const double L01 = p[0] * (time[1] - t) / (time[1] - time[0]) + p[1] * (t - time[0]) / (time[1] - time[0]);
		const double L12 = p[1] * (time[2] - t) / (time[2] - time[1]) + p[2] * (t - time[1]) / (time[2] - time[1]);
		const double L23 = p[2] * (time[3] - t) / (time[3] - time[2]) + p[3] * (t - time[2]) / (time[3] - time[2]);
		const double L012 = L01 * (time[2] - t) / (time[2] - time[0]) + L12 * (t - time[0]) / (time[2] - time[0]);
		const double L123 = L12 * (time[3] - t) / (time[3] - time[1]) + L23 * (t - time[1]) / (time[3] - time[1]);
		const double C12 = L012 * (time[2] - t) / (time[2] - time[1]) + L123 * (t - time[1]) / (time[2] - time[1]);
		return C12;
	}

	/**
	 * Given a list of control points, this will create a list of points_per_segment
	 * points spaced uniformly along the resulting Catmull-Rom curve.
	 *
	 * @param points The list of control points, leading and ending with a
	 * coordinate that is only used for controling the spline and is not visualized.
	 * @param index The index of control point p0, where p0, p1, p2, and p3 are
	 * used in order to create a curve between p1 and p2.
	 * @param points_per_segment The total number of uniformly spaced interpolated
	 * points to calculate for each segment. The larger this number, the
	 * smoother the resulting curve.
	 * @param curve_type Clarifies whether the curve should use uniform, chordal
	 * or centripetal curve types. Uniform can produce loops, chordal can
	 * produce large distortions from the original lines, and centripetal is an
	 * optimal balance without spaces.
	 * @return the list of coordinates that define the CatmullRom curve
	 * between the points defined by index+1 and index+2.
	 */
	static void
		_interpolate (const Points& points, Points::size_type index, int points_per_segment, SplineType curve_type, Points& results)
	{
		double x[4];
		double y[4];
		double time[4];

		for (int i = 0; i < 4; i++) {
			x[i] = points[index + i].x;
			y[i] = points[index + i].y;
			time[i] = i;
		}

		double tstart = 1;
		double tend = 2;

		if (curve_type != CatmullRomUniform) {
			double total = 0;
			for (int i = 1; i < 4; i++) {
				double dx = x[i] - x[i - 1];
				double dy = y[i] - y[i - 1];
				if (curve_type == CatmullRomCentripetal) {
					total += pow (dx * dx + dy * dy, .25);
				} else {
					total += pow (dx * dx + dy * dy, .5);
				}
				time[i] = total;
			}
			tstart = time[1];
			tend = time[2];
		}

		int segments = points_per_segment - 1;
		results.push_back (points[index + 1]);

		for (int i = 1; i < segments; i++) {
			double xi = __interpolate (x, time, tstart + (i * (tend - tstart)) / segments);
			double yi = __interpolate (y, time, tstart + (i * (tend - tstart)) / segments);
			results.push_back (Duple (xi, yi));
		}

		results.push_back (points[index + 2]);
	}
};

}

#endif