summaryrefslogtreecommitdiff
path: root/libs/rubberband/src/StretchCalculator.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'libs/rubberband/src/StretchCalculator.cpp')
-rw-r--r--libs/rubberband/src/StretchCalculator.cpp799
1 files changed, 0 insertions, 799 deletions
diff --git a/libs/rubberband/src/StretchCalculator.cpp b/libs/rubberband/src/StretchCalculator.cpp
deleted file mode 100644
index 1541759762..0000000000
--- a/libs/rubberband/src/StretchCalculator.cpp
+++ /dev/null
@@ -1,799 +0,0 @@
-/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
-
-/*
- Rubber Band
- An audio time-stretching and pitch-shifting library.
- Copyright 2007-2008 Chris Cannam.
-
- This program is free software; you can redistribute it and/or
- modify it under the terms of the GNU General Public License as
- published by the Free Software Foundation; either version 2 of the
- License, or (at your option) any later version. See the file
- COPYING included with this distribution for more information.
-*/
-
-#include "StretchCalculator.h"
-
-#include <algorithm>
-#include <math.h>
-#include <algorithm>
-#include <iostream>
-#include <deque>
-#include <set>
-#include <cassert>
-#include <algorithm>
-
-#include "sysutils.h"
-
-namespace RubberBand
-{
-
-StretchCalculator::StretchCalculator(size_t sampleRate,
- size_t inputIncrement,
- bool useHardPeaks) :
- m_sampleRate(sampleRate),
- m_increment(inputIncrement),
- m_prevDf(0),
- m_divergence(0),
- m_recovery(0),
- m_prevRatio(1.0),
- m_transientAmnesty(0),
- m_useHardPeaks(useHardPeaks)
-{
-// std::cerr << "StretchCalculator::StretchCalculator: useHardPeaks = " << useHardPeaks << std::endl;
-}
-
-StretchCalculator::~StretchCalculator()
-{
-}
-
-std::vector<int>
-StretchCalculator::calculate(double ratio, size_t inputDuration,
- const std::vector<float> &phaseResetDf,
- const std::vector<float> &stretchDf)
-{
- assert(phaseResetDf.size() == stretchDf.size());
-
- m_lastPeaks = findPeaks(phaseResetDf);
- std::vector<Peak> &peaks = m_lastPeaks;
- size_t totalCount = phaseResetDf.size();
-
- std::vector<int> increments;
-
- size_t outputDuration = lrint(inputDuration * ratio);
-
- if (m_debugLevel > 0) {
- std::cerr << "StretchCalculator::calculate(): inputDuration " << inputDuration << ", ratio " << ratio << ", outputDuration " << outputDuration;
- }
-
- outputDuration = lrint((phaseResetDf.size() * m_increment) * ratio);
-
- if (m_debugLevel > 0) {
- std::cerr << " (rounded up to " << outputDuration << ")";
- std::cerr << ", df size " << phaseResetDf.size() << std::endl;
- }
-
- std::vector<size_t> fixedAudioChunks;
- for (size_t i = 0; i < peaks.size(); ++i) {
- fixedAudioChunks.push_back
- (lrint((double(peaks[i].chunk) * outputDuration) / totalCount));
- }
-
- if (m_debugLevel > 1) {
- std::cerr << "have " << peaks.size() << " fixed positions" << std::endl;
- }
-
- size_t totalInput = 0, totalOutput = 0;
-
- // For each region between two consecutive time sync points, we
- // want to take the number of output chunks to be allocated and
- // the detection function values within the range, and produce a
- // series of increments that sum to the number of output chunks,
- // such that each increment is displaced from the input increment
- // by an amount inversely proportional to the magnitude of the
- // stretch detection function at that input step.
-
- size_t regionTotalChunks = 0;
-
- for (size_t i = 0; i <= peaks.size(); ++i) {
-
- size_t regionStart, regionStartChunk, regionEnd, regionEndChunk;
- bool phaseReset = false;
-
- if (i == 0) {
- regionStartChunk = 0;
- regionStart = 0;
- } else {
- regionStartChunk = peaks[i-1].chunk;
- regionStart = fixedAudioChunks[i-1];
- phaseReset = peaks[i-1].hard;
- }
-
- if (i == peaks.size()) {
- regionEndChunk = totalCount;
- regionEnd = outputDuration;
- } else {
- regionEndChunk = peaks[i].chunk;
- regionEnd = fixedAudioChunks[i];
- }
-
- size_t regionDuration = regionEnd - regionStart;
- regionTotalChunks += regionDuration;
-
- std::vector<float> dfRegion;
-
- for (size_t j = regionStartChunk; j != regionEndChunk; ++j) {
- dfRegion.push_back(stretchDf[j]);
- }
-
- if (m_debugLevel > 1) {
- std::cerr << "distributeRegion from " << regionStartChunk << " to " << regionEndChunk << " (chunks " << regionStart << " to " << regionEnd << ")" << std::endl;
- }
-
- dfRegion = smoothDF(dfRegion);
-
- std::vector<int> regionIncrements = distributeRegion
- (dfRegion, regionDuration, ratio, phaseReset);
-
- size_t totalForRegion = 0;
-
- for (size_t j = 0; j < regionIncrements.size(); ++j) {
-
- int incr = regionIncrements[j];
-
- if (j == 0 && phaseReset) increments.push_back(-incr);
- else increments.push_back(incr);
-
- if (incr > 0) totalForRegion += incr;
- else totalForRegion += -incr;
-
- totalInput += m_increment;
- }
-
- if (totalForRegion != regionDuration) {
- std::cerr << "*** WARNING: distributeRegion returned wrong duration " << totalForRegion << ", expected " << regionDuration << std::endl;
- }
-
- totalOutput += totalForRegion;
- }
-
- if (m_debugLevel > 0) {
- std::cerr << "total input increment = " << totalInput << " (= " << totalInput / m_increment << " chunks), output = " << totalOutput << ", ratio = " << double(totalOutput)/double(totalInput) << ", ideal output " << size_t(ceil(totalInput * ratio)) << std::endl;
- std::cerr << "(region total = " << regionTotalChunks << ")" << std::endl;
- }
-
- return increments;
-}
-
-int
-StretchCalculator::calculateSingle(double ratio,
- float df,
- size_t increment)
-{
- if (increment == 0) increment = m_increment;
-
- bool isTransient = false;
-
- // We want to ensure, as close as possible, that the phase reset
- // points appear at _exactly_ the right audio frame numbers.
-
- // In principle, the threshold depends on chunk size: larger chunk
- // sizes need higher thresholds. Since chunk size depends on
- // ratio, I suppose we could in theory calculate the threshold
- // from the ratio directly. For the moment we're happy if it
- // works well in common situations.
-
- float transientThreshold = 0.35f;
- if (ratio > 1) transientThreshold = 0.25f;
-
- if (m_useHardPeaks && df > m_prevDf * 1.1f && df > transientThreshold) {
- isTransient = true;
- }
-
- if (m_debugLevel > 2) {
- std::cerr << "df = " << df << ", prevDf = " << m_prevDf
- << ", thresh = " << transientThreshold << std::endl;
- }
-
- m_prevDf = df;
-
- bool ratioChanged = (ratio != m_prevRatio);
- m_prevRatio = ratio;
-
- if (isTransient && m_transientAmnesty == 0) {
- if (m_debugLevel > 1) {
- std::cerr << "StretchCalculator::calculateSingle: transient"
- << std::endl;
- }
- m_divergence += increment - (increment * ratio);
-
- // as in offline mode, 0.05 sec approx min between transients
- m_transientAmnesty =
- lrint(ceil(double(m_sampleRate) / (20 * double(increment))));
-
- m_recovery = m_divergence / ((m_sampleRate / 10.0) / increment);
- return -int(increment);
- }
-
- if (ratioChanged) {
- m_recovery = m_divergence / ((m_sampleRate / 10.0) / increment);
- }
-
- if (m_transientAmnesty > 0) --m_transientAmnesty;
-
- int incr = lrint(increment * ratio - m_recovery);
- if (m_debugLevel > 2 || (m_debugLevel > 1 && m_divergence != 0)) {
- std::cerr << "divergence = " << m_divergence << ", recovery = " << m_recovery << ", incr = " << incr << ", ";
- }
- if (incr < lrint((increment * ratio) / 2)) {
- incr = lrint((increment * ratio) / 2);
- } else if (incr > lrint(increment * ratio * 2)) {
- incr = lrint(increment * ratio * 2);
- }
-
- double divdiff = (increment * ratio) - incr;
-
- if (m_debugLevel > 2 || (m_debugLevel > 1 && m_divergence != 0)) {
- std::cerr << "divdiff = " << divdiff << std::endl;
- }
-
- double prevDivergence = m_divergence;
- m_divergence -= divdiff;
- if ((prevDivergence < 0 && m_divergence > 0) ||
- (prevDivergence > 0 && m_divergence < 0)) {
- m_recovery = m_divergence / ((m_sampleRate / 10.0) / increment);
- }
-
- return incr;
-}
-
-void
-StretchCalculator::reset()
-{
- m_prevDf = 0;
- m_divergence = 0;
-}
-
-std::vector<StretchCalculator::Peak>
-StretchCalculator::findPeaks(const std::vector<float> &rawDf)
-{
- std::vector<float> df = smoothDF(rawDf);
-
- // We distinguish between "soft" and "hard" peaks. A soft peak is
- // simply the result of peak-picking on the smoothed onset
- // detection function, and it represents any (strong-ish) onset.
- // We aim to ensure always that soft peaks are placed at the
- // correct position in time. A hard peak is where there is a very
- // rapid rise in detection function, and it presumably represents
- // a more broadband, noisy transient. For these we perform a
- // phase reset (if in the appropriate mode), and we locate the
- // reset at the first point where we notice enough of a rapid
- // rise, rather than necessarily at the peak itself, in order to
- // preserve the shape of the transient.
-
- std::set<size_t> hardPeakCandidates;
- std::set<size_t> softPeakCandidates;
-
- if (m_useHardPeaks) {
-
- // 0.05 sec approx min between hard peaks
- size_t hardPeakAmnesty = lrint(ceil(double(m_sampleRate) /
- (20 * double(m_increment))));
- size_t prevHardPeak = 0;
-
- if (m_debugLevel > 1) {
- std::cerr << "hardPeakAmnesty = " << hardPeakAmnesty << std::endl;
- }
-
- for (size_t i = 1; i + 1 < df.size(); ++i) {
-
- if (df[i] < 0.1) continue;
- if (df[i] <= df[i-1] * 1.1) continue;
- if (df[i] < 0.22) continue;
-
- if (!hardPeakCandidates.empty() &&
- i < prevHardPeak + hardPeakAmnesty) {
- continue;
- }
-
- bool hard = (df[i] > 0.4);
-
- if (hard && (m_debugLevel > 1)) {
- std::cerr << "hard peak at " << i << ": " << df[i]
- << " > absolute " << 0.4
- << std::endl;
- }
-
- if (!hard) {
- hard = (df[i] > df[i-1] * 1.4);
-
- if (hard && (m_debugLevel > 1)) {
- std::cerr << "hard peak at " << i << ": " << df[i]
- << " > prev " << df[i-1] << " * 1.4"
- << std::endl;
- }
- }
-
- if (!hard && i > 1) {
- hard = (df[i] > df[i-1] * 1.2 &&
- df[i-1] > df[i-2] * 1.2);
-
- if (hard && (m_debugLevel > 1)) {
- std::cerr << "hard peak at " << i << ": " << df[i]
- << " > prev " << df[i-1] << " * 1.2 and "
- << df[i-1] << " > prev " << df[i-2] << " * 1.2"
- << std::endl;
- }
- }
-
- if (!hard && i > 2) {
- // have already established that df[i] > df[i-1] * 1.1
- hard = (df[i] > 0.3 &&
- df[i-1] > df[i-2] * 1.1 &&
- df[i-2] > df[i-3] * 1.1);
-
- if (hard && (m_debugLevel > 1)) {
- std::cerr << "hard peak at " << i << ": " << df[i]
- << " > prev " << df[i-1] << " * 1.1 and "
- << df[i-1] << " > prev " << df[i-2] << " * 1.1 and "
- << df[i-2] << " > prev " << df[i-3] << " * 1.1"
- << std::endl;
- }
- }
-
- if (!hard) continue;
-
-// (df[i+1] > df[i] && df[i+1] > df[i-1] * 1.8) ||
-// df[i] > 0.4) {
-
- size_t peakLocation = i;
-
- if (i + 1 < rawDf.size() &&
- rawDf[i + 1] > rawDf[i] * 1.4) {
-
- ++peakLocation;
-
- if (m_debugLevel > 1) {
- std::cerr << "pushing hard peak forward to " << peakLocation << ": " << df[peakLocation] << " > " << df[peakLocation-1] << " * " << 1.4 << std::endl;
- }
- }
-
- hardPeakCandidates.insert(peakLocation);
- prevHardPeak = peakLocation;
- }
- }
-
- size_t medianmaxsize = lrint(ceil(double(m_sampleRate) /
- double(m_increment))); // 1 sec ish
-
- if (m_debugLevel > 1) {
- std::cerr << "mediansize = " << medianmaxsize << std::endl;
- }
- if (medianmaxsize < 7) {
- medianmaxsize = 7;
- if (m_debugLevel > 1) {
- std::cerr << "adjusted mediansize = " << medianmaxsize << std::endl;
- }
- }
-
- int minspacing = lrint(ceil(double(m_sampleRate) /
- (20 * double(m_increment)))); // 0.05 sec ish
-
- std::deque<float> medianwin;
- std::vector<float> sorted;
- int softPeakAmnesty = 0;
-
- for (size_t i = 0; i < medianmaxsize/2; ++i) {
- medianwin.push_back(0);
- }
- for (size_t i = 0; i < medianmaxsize/2 && i < df.size(); ++i) {
- medianwin.push_back(df[i]);
- }
-
- size_t lastSoftPeak = 0;
-
- for (size_t i = 0; i < df.size(); ++i) {
-
- size_t mediansize = medianmaxsize;
-
- if (medianwin.size() < mediansize) {
- mediansize = medianwin.size();
- }
-
- size_t middle = medianmaxsize / 2;
- if (middle >= mediansize) middle = mediansize-1;
-
- size_t nextDf = i + mediansize - middle;
-
- if (mediansize < 2) {
- if (mediansize > medianmaxsize) { // absurd, but never mind that
- medianwin.pop_front();
- }
- if (nextDf < df.size()) {
- medianwin.push_back(df[nextDf]);
- } else {
- medianwin.push_back(0);
- }
- continue;
- }
-
- if (m_debugLevel > 2) {
-// std::cerr << "have " << mediansize << " in median buffer" << std::endl;
- }
-
- sorted.clear();
- for (size_t j = 0; j < mediansize; ++j) {
- sorted.push_back(medianwin[j]);
- }
- std::sort(sorted.begin(), sorted.end());
-
- size_t n = 90; // percentile above which we pick peaks
- size_t index = (sorted.size() * n) / 100;
- if (index >= sorted.size()) index = sorted.size()-1;
- if (index == sorted.size()-1 && index > 0) --index;
- float thresh = sorted[index];
-
-// if (m_debugLevel > 2) {
-// std::cerr << "medianwin[" << middle << "] = " << medianwin[middle] << ", thresh = " << thresh << std::endl;
-// if (medianwin[middle] == 0.f) {
-// std::cerr << "contents: ";
-// for (size_t j = 0; j < medianwin.size(); ++j) {
-// std::cerr << medianwin[j] << " ";
-// }
-// std::cerr << std::endl;
-// }
-// }
-
- if (medianwin[middle] > thresh &&
- medianwin[middle] > medianwin[middle-1] &&
- medianwin[middle] > medianwin[middle+1] &&
- softPeakAmnesty == 0) {
-
- size_t maxindex = middle;
- float maxval = medianwin[middle];
-
- for (size_t j = middle+1; j < mediansize; ++j) {
- if (medianwin[j] > maxval) {
- maxval = medianwin[j];
- maxindex = j;
- } else if (medianwin[j] < medianwin[middle]) {
- break;
- }
- }
-
- size_t peak = i + maxindex - middle;
-
-// std::cerr << "i = " << i << ", maxindex = " << maxindex << ", middle = " << middle << ", so peak at " << peak << std::endl;
-
- if (softPeakCandidates.empty() || lastSoftPeak != peak) {
-
- if (m_debugLevel > 1) {
- std::cerr << "soft peak at " << peak << " ("
- << peak * m_increment << "): "
- << medianwin[middle] << " > "
- << thresh << " and "
- << medianwin[middle]
- << " > " << medianwin[middle-1] << " and "
- << medianwin[middle]
- << " > " << medianwin[middle+1]
- << std::endl;
- }
-
- if (peak >= df.size()) {
- if (m_debugLevel > 2) {
- std::cerr << "peak is beyond end" << std::endl;
- }
- } else {
- softPeakCandidates.insert(peak);
- lastSoftPeak = peak;
- }
- }
-
- softPeakAmnesty = minspacing + maxindex - middle;
- if (m_debugLevel > 2) {
- std::cerr << "amnesty = " << softPeakAmnesty << std::endl;
- }
-
- } else if (softPeakAmnesty > 0) --softPeakAmnesty;
-
- if (mediansize >= medianmaxsize) {
- medianwin.pop_front();
- }
- if (nextDf < df.size()) {
- medianwin.push_back(df[nextDf]);
- } else {
- medianwin.push_back(0);
- }
- }
-
- std::vector<Peak> peaks;
-
- while (!hardPeakCandidates.empty() || !softPeakCandidates.empty()) {
-
- bool haveHardPeak = !hardPeakCandidates.empty();
- bool haveSoftPeak = !softPeakCandidates.empty();
-
- size_t hardPeak = (haveHardPeak ? *hardPeakCandidates.begin() : 0);
- size_t softPeak = (haveSoftPeak ? *softPeakCandidates.begin() : 0);
-
- Peak peak;
- peak.hard = false;
- peak.chunk = softPeak;
-
- bool ignore = false;
-
- if (haveHardPeak &&
- (!haveSoftPeak || hardPeak <= softPeak)) {
-
- if (m_debugLevel > 2) {
- std::cerr << "Hard peak: " << hardPeak << std::endl;
- }
-
- peak.hard = true;
- peak.chunk = hardPeak;
- hardPeakCandidates.erase(hardPeakCandidates.begin());
-
- } else {
- if (m_debugLevel > 2) {
- std::cerr << "Soft peak: " << softPeak << std::endl;
- }
- if (!peaks.empty() &&
- peaks[peaks.size()-1].hard &&
- peaks[peaks.size()-1].chunk + 3 >= softPeak) {
- if (m_debugLevel > 2) {
- std::cerr << "(ignoring, as we just had a hard peak)"
- << std::endl;
- }
- ignore = true;
- }
- }
-
- if (haveSoftPeak && peak.chunk == softPeak) {
- softPeakCandidates.erase(softPeakCandidates.begin());
- }
-
- if (!ignore) {
- peaks.push_back(peak);
- }
- }
-
- return peaks;
-}
-
-std::vector<float>
-StretchCalculator::smoothDF(const std::vector<float> &df)
-{
- std::vector<float> smoothedDF;
-
- for (size_t i = 0; i < df.size(); ++i) {
- // three-value moving mean window for simple smoothing
- float total = 0.f, count = 0;
- if (i > 0) { total += df[i-1]; ++count; }
- total += df[i]; ++count;
- if (i+1 < df.size()) { total += df[i+1]; ++count; }
- float mean = total / count;
- smoothedDF.push_back(mean);
- }
-
- return smoothedDF;
-}
-
-std::vector<int>
-StretchCalculator::distributeRegion(const std::vector<float> &dfIn,
- size_t duration, float ratio, bool phaseReset)
-{
- std::vector<float> df(dfIn);
- std::vector<int> increments;
-
- // The peak for the stretch detection function may appear after
- // the peak that we're using to calculate the start of the region.
- // We don't want that. If we find a peak in the first half of
- // the region, we should set all the values up to that point to
- // the same value as the peak.
-
- // (This might not be subtle enough, especially if the region is
- // long -- we want a bound that corresponds to acoustic perception
- // of the audible bounce.)
-
- for (size_t i = 1; i < df.size()/2; ++i) {
- if (df[i] < df[i-1]) {
- if (m_debugLevel > 1) {
- std::cerr << "stretch peak offset: " << i-1 << " (peak " << df[i-1] << ")" << std::endl;
- }
- for (size_t j = 0; j < i-1; ++j) {
- df[j] = df[i-1];
- }
- break;
- }
- }
-
- float maxDf = 0;
-
- for (size_t i = 0; i < df.size(); ++i) {
- if (i == 0 || df[i] > maxDf) maxDf = df[i];
- }
-
- // We want to try to ensure the last 100ms or so (if possible) are
- // tending back towards the maximum df, so that the stretchiness
- // reduces at the end of the stretched region.
-
- int reducedRegion = lrint((0.1 * m_sampleRate) / m_increment);
- if (reducedRegion > int(df.size()/5)) reducedRegion = df.size()/5;
-
- for (int i = 0; i < reducedRegion; ++i) {
- size_t index = df.size() - reducedRegion + i;
- df[index] = df[index] + ((maxDf - df[index]) * i) / reducedRegion;
- }
-
- long toAllot = long(duration) - long(m_increment * df.size());
-
- if (m_debugLevel > 1) {
- std::cerr << "region of " << df.size() << " chunks, output duration " << duration << ", toAllot " << toAllot << std::endl;
- }
-
- size_t totalIncrement = 0;
-
- // We place limits on the amount of displacement per chunk. if
- // ratio < 0, no increment should be larger than increment*ratio
- // or smaller than increment*ratio/2; if ratio > 0, none should be
- // smaller than increment*ratio or larger than increment*ratio*2.
- // We need to enforce this in the assignment of displacements to
- // allotments, not by trying to respond if something turns out
- // wrong.
-
- // Note that the ratio is only provided to this function for the
- // purposes of establishing this bound to the displacement.
-
- // so if
- // maxDisplacement / totalDisplacement > increment * ratio*2 - increment
- // (for ratio > 1)
- // or
- // maxDisplacement / totalDisplacement < increment * ratio/2
- // (for ratio < 1)
-
- // then we need to adjust and accommodate
-
- bool acceptableSquashRange = false;
-
- double totalDisplacement = 0;
- double maxDisplacement = 0; // min displacement will be 0 by definition
-
- maxDf = 0;
- float adj = 0;
-
- while (!acceptableSquashRange) {
-
- acceptableSquashRange = true;
- calculateDisplacements(df, maxDf, totalDisplacement, maxDisplacement,
- adj);
-
- if (m_debugLevel > 1) {
- std::cerr << "totalDisplacement " << totalDisplacement << ", max " << maxDisplacement << " (maxDf " << maxDf << ", df count " << df.size() << ")" << std::endl;
- }
-
- if (totalDisplacement == 0) {
-// Not usually a problem, in fact
-// std::cerr << "WARNING: totalDisplacement == 0 (duration " << duration << ", " << df.size() << " values in df)" << std::endl;
- if (!df.empty() && adj == 0) {
- acceptableSquashRange = false;
- adj = 1;
- }
- continue;
- }
-
- int extremeIncrement = m_increment + lrint((toAllot * maxDisplacement) / totalDisplacement);
- if (ratio < 1.0) {
- if (extremeIncrement > lrint(ceil(m_increment * ratio))) {
- std::cerr << "ERROR: extreme increment " << extremeIncrement << " > " << m_increment * ratio << " (this should not happen)" << std::endl;
- } else if (extremeIncrement < (m_increment * ratio) / 2) {
- if (m_debugLevel > 0) {
- std::cerr << "WARNING: extreme increment " << extremeIncrement << " < " << (m_increment * ratio) / 2 << std::endl;
- }
- acceptableSquashRange = false;
- }
- } else {
- if (extremeIncrement > m_increment * ratio * 2) {
- if (m_debugLevel > 0) {
- std::cerr << "WARNING: extreme increment " << extremeIncrement << " > " << m_increment * ratio * 2 << std::endl;
- }
- acceptableSquashRange = false;
- } else if (extremeIncrement < lrint(floor(m_increment * ratio))) {
- std::cerr << "ERROR: extreme increment " << extremeIncrement << " < " << m_increment * ratio << " (I thought this couldn't happen?)" << std::endl;
- }
- }
-
- if (!acceptableSquashRange) {
- // Need to make maxDisplacement smaller as a proportion of
- // the total displacement, yet ensure that the
- // displacements still sum to the total.
- adj += maxDf/10;
- }
- }
-
- for (size_t i = 0; i < df.size(); ++i) {
-
- double displacement = maxDf - df[i];
- if (displacement < 0) displacement -= adj;
- else displacement += adj;
-
- if (i == 0 && phaseReset) {
- if (df.size() == 1) {
- increments.push_back(duration);
- totalIncrement += duration;
- } else {
- increments.push_back(m_increment);
- totalIncrement += m_increment;
- }
- totalDisplacement -= displacement;
- continue;
- }
-
- double theoreticalAllotment = 0;
-
- if (totalDisplacement != 0) {
- theoreticalAllotment = (toAllot * displacement) / totalDisplacement;
- }
- int allotment = lrint(theoreticalAllotment);
- if (i + 1 == df.size()) allotment = toAllot;
-
- int increment = m_increment + allotment;
-
- if (increment <= 0) {
- // this is a serious problem, the allocation is quite
- // wrong if it allows increment to diverge so far from the
- // input increment
- std::cerr << "*** WARNING: increment " << increment << " <= 0, rounding to zero" << std::endl;
- increment = 0;
- allotment = increment - m_increment;
- }
-
- increments.push_back(increment);
- totalIncrement += increment;
-
- toAllot -= allotment;
- totalDisplacement -= displacement;
-
- if (m_debugLevel > 2) {
- std::cerr << "df " << df[i] << ", smoothed " << df[i] << ", disp " << displacement << ", allot " << theoreticalAllotment << ", incr " << increment << ", remain " << toAllot << std::endl;
- }
- }
-
- if (m_debugLevel > 2) {
- std::cerr << "total increment: " << totalIncrement << ", left over: " << toAllot << " to allot, displacement " << totalDisplacement << std::endl;
- }
-
- if (totalIncrement != duration) {
- std::cerr << "*** WARNING: calculated output duration " << totalIncrement << " != expected " << duration << std::endl;
- }
-
- return increments;
-}
-
-void
-StretchCalculator::calculateDisplacements(const std::vector<float> &df,
- float &maxDf,
- double &totalDisplacement,
- double &maxDisplacement,
- float adj) const
-{
- totalDisplacement = maxDisplacement = 0;
-
- maxDf = 0;
-
- for (size_t i = 0; i < df.size(); ++i) {
- if (i == 0 || df[i] > maxDf) maxDf = df[i];
- }
-
- for (size_t i = 0; i < df.size(); ++i) {
- double displacement = maxDf - df[i];
- if (displacement < 0) displacement -= adj;
- else displacement += adj;
- totalDisplacement += displacement;
- if (i == 0 || displacement > maxDisplacement) {
- maxDisplacement = displacement;
- }
- }
-}
-
-}
-