summaryrefslogtreecommitdiff
path: root/libs/canvas/curve.cc
diff options
context:
space:
mode:
Diffstat (limited to 'libs/canvas/curve.cc')
-rw-r--r--libs/canvas/curve.cc211
1 files changed, 211 insertions, 0 deletions
diff --git a/libs/canvas/curve.cc b/libs/canvas/curve.cc
new file mode 100644
index 0000000000..5bbd33799d
--- /dev/null
+++ b/libs/canvas/curve.cc
@@ -0,0 +1,211 @@
+/*
+ Copyright (C) 2013 Paul Davis
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 2 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+
+*/
+
+#include <exception>
+#include <algorithm>
+
+#include "canvas/curve.h"
+
+using namespace ArdourCanvas;
+using std::min;
+using std::max;
+
+Curve::Curve (Group* parent)
+ : Item (parent)
+ , PolyItem (parent)
+{
+
+}
+
+void
+Curve::compute_bounding_box () const
+{
+ PolyItem::compute_bounding_box ();
+
+ if (_bounding_box) {
+
+ bool have1 = false;
+ bool have2 = false;
+
+ Rect bbox1;
+ Rect bbox2;
+
+ for (Points::const_iterator i = first_control_points.begin(); i != first_control_points.end(); ++i) {
+ if (have1) {
+ bbox1.x0 = min (bbox1.x0, i->x);
+ bbox1.y0 = min (bbox1.y0, i->y);
+ bbox1.x1 = max (bbox1.x1, i->x);
+ bbox1.y1 = max (bbox1.y1, i->y);
+ } else {
+ bbox1.x0 = bbox1.x1 = i->x;
+ bbox1.y0 = bbox1.y1 = i->y;
+ have1 = true;
+ }
+ }
+
+ for (Points::const_iterator i = second_control_points.begin(); i != second_control_points.end(); ++i) {
+ if (have2) {
+ bbox2.x0 = min (bbox2.x0, i->x);
+ bbox2.y0 = min (bbox2.y0, i->y);
+ bbox2.x1 = max (bbox2.x1, i->x);
+ bbox2.y1 = max (bbox2.y1, i->y);
+ } else {
+ bbox2.x0 = bbox2.x1 = i->x;
+ bbox2.y0 = bbox2.y1 = i->y;
+ have2 = true;
+ }
+ }
+
+ Rect u = bbox1.extend (bbox2);
+ _bounding_box = u.extend (_bounding_box.get());
+ }
+
+ _bounding_box_dirty = false;
+}
+
+void
+Curve::set (Points const& p)
+{
+ PolyItem::set (p);
+
+ first_control_points.clear ();
+ second_control_points.clear ();
+
+ compute_control_points (_points, first_control_points, second_control_points);
+}
+
+void
+Curve::render (Rect const & area, Cairo::RefPtr<Cairo::Context> context) const
+{
+ if (_outline) {
+ setup_outline_context (context);
+ render_path (area, context);
+ context->stroke ();
+ }
+}
+
+void
+Curve::render_path (Rect const & area, Cairo::RefPtr<Cairo::Context> context) const
+{
+ PolyItem::render_curve (area, context, first_control_points, second_control_points);
+}
+
+void
+Curve::compute_control_points (Points const& knots,
+ Points& firstControlPoints,
+ Points& secondControlPoints)
+{
+ Points::size_type n = knots.size() - 1;
+
+ if (n < 1) {
+ return;
+ }
+
+ if (n == 1) {
+ /* Special case: Bezier curve should be a straight line. */
+
+ Duple d;
+
+ d.x = (2.0 * knots[0].x + knots[1].x) / 3;
+ d.y = (2.0 * knots[0].y + knots[1].y) / 3;
+ firstControlPoints.push_back (d);
+
+ d.x = 2.0 * firstControlPoints[0].x - knots[0].x;
+ d.y = 2.0 * firstControlPoints[0].y - knots[0].y;
+ secondControlPoints.push_back (d);
+
+ return;
+ }
+
+ // Calculate first Bezier control points
+ // Right hand side vector
+
+ std::vector<double> rhs;
+
+ rhs.assign (n, 0);
+
+ // Set right hand side X values
+
+ for (Points::size_type i = 1; i < n - 1; ++i) {
+ rhs[i] = 4 * knots[i].x + 2 * knots[i + 1].x;
+ }
+ rhs[0] = knots[0].x + 2 * knots[1].x;
+ rhs[n - 1] = (8 * knots[n - 1].x + knots[n].x) / 2.0;
+
+ // Get first control points X-values
+ double* x = solve (rhs);
+
+ // Set right hand side Y values
+ for (Points::size_type i = 1; i < n - 1; ++i) {
+ rhs[i] = 4 * knots[i].y + 2 * knots[i + 1].y;
+ }
+ rhs[0] = knots[0].y + 2 * knots[1].y;
+ rhs[n - 1] = (8 * knots[n - 1].y + knots[n].y) / 2.0;
+
+ // Get first control points Y-values
+ double* y = solve (rhs);
+
+ for (Points::size_type i = 0; i < n; ++i) {
+
+ firstControlPoints.push_back (Duple (x[i], y[i]));
+
+ if (i < n - 1) {
+ secondControlPoints.push_back (Duple (2 * knots [i + 1].x - x[i + 1],
+ 2 * knots[i + 1].y - y[i + 1]));
+ } else {
+ secondControlPoints.push_back (Duple ((knots [n].x + x[n - 1]) / 2,
+ (knots[n].y + y[n - 1]) / 2));
+ }
+ }
+
+ delete [] x;
+ delete [] y;
+}
+
+/** Solves a tridiagonal system for one of coordinates (x or y)
+ * of first Bezier control points.
+ */
+
+double*
+Curve::solve (std::vector<double> const & rhs)
+{
+ std::vector<double>::size_type n = rhs.size();
+ double* x = new double[n]; // Solution vector.
+ double* tmp = new double[n]; // Temp workspace.
+
+ double b = 2.0;
+
+ x[0] = rhs[0] / b;
+
+ for (std::vector<double>::size_type i = 1; i < n; i++) {
+ // Decomposition and forward substitution.
+ tmp[i] = 1 / b;
+ b = (i < n - 1 ? 4.0 : 3.5) - tmp[i];
+ x[i] = (rhs[i] - x[i - 1]) / b;
+ }
+
+ for (std::vector<double>::size_type i = 1; i < n; i++) {
+ // Backsubstitution
+ x[n - i - 1] -= tmp[n - i] * x[n - i];
+ }
+
+ delete [] tmp;
+
+ return x;
+}