summaryrefslogtreecommitdiff
path: root/libs/qm-dsp/maths/pca/pca.c
blob: 288ec4d2e488fa225dfe893dcf3f966202084d08 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
/*********************************/
/* Principal Components Analysis */
/*********************************/

/*********************************************************************/
/* Principal Components Analysis or the Karhunen-Loeve expansion is a
   classical method for dimensionality reduction or exploratory data
   analysis.  One reference among many is: F. Murtagh and A. Heck,
   Multivariate Data Analysis, Kluwer Academic, Dordrecht, 1987.

   Author:
   F. Murtagh
   Phone:        + 49 89 32006298 (work)
                 + 49 89 965307 (home)
   Earn/Bitnet:  fionn@dgaeso51,  fim@dgaipp1s,  murtagh@stsci
   Span:         esomc1::fionn
   Internet:     murtagh@scivax.stsci.edu

   F. Murtagh, Munich, 6 June 1989                                   */
/*********************************************************************/

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#include "pca.h"

#define SIGN(a, b) ( (b) < 0 ? -fabs(a) : fabs(a) )

/**  Variance-covariance matrix: creation  *****************************/

/* Create m * m covariance matrix from given n * m data matrix. */
void covcol(double** data, int n, int m, double** symmat)
{
double *mean;
int i, j, j1, j2;

/* Allocate storage for mean vector */

mean = (double*) malloc(m*sizeof(double));

/* Determine mean of column vectors of input data matrix */

for (j = 0; j < m; j++)
    {
    mean[j] = 0.0;
    for (i = 0; i < n; i++)
        {
        mean[j] += data[i][j];
        }
    mean[j] /= (double)n;
    }

/*
printf("\nMeans of column vectors:\n");
for (j = 0; j < m; j++)  {
    printf("%12.1f",mean[j]);  }   printf("\n");
 */

/* Center the column vectors. */

for (i = 0; i < n; i++)
    {
    for (j = 0; j < m; j++)
        {
        data[i][j] -= mean[j];
        }
    }

/* Calculate the m * m covariance matrix. */
for (j1 = 0; j1 < m; j1++)
    {
    for (j2 = j1; j2 < m; j2++)
        {
        symmat[j1][j2] = 0.0;
        for (i = 0; i < n; i++)
            {
            symmat[j1][j2] += data[i][j1] * data[i][j2];
            }
        symmat[j2][j1] = symmat[j1][j2];
        }
    }

free(mean);

return;

}

/**  Error handler  **************************************************/

void erhand(char* err_msg)
{
    fprintf(stderr,"Run-time error:\n");
    fprintf(stderr,"%s\n", err_msg);
    fprintf(stderr,"Exiting to system.\n");
    exit(1);
}


/**  Reduce a real, symmetric matrix to a symmetric, tridiag. matrix. */

/* Householder reduction of matrix a to tridiagonal form.
Algorithm: Martin et al., Num. Math. 11, 181-195, 1968.
Ref: Smith et al., Matrix Eigensystem Routines -- EISPACK Guide
Springer-Verlag, 1976, pp. 489-494.
W H Press et al., Numerical Recipes in C, Cambridge U P,
1988, pp. 373-374.  */
void tred2(double** a, int n, double* d, double* e)
{
	int l, k, j, i;
	double scale, hh, h, g, f;
	
	for (i = n-1; i >= 1; i--)
    {
		l = i - 1;
		h = scale = 0.0;
		if (l > 0)
		{
			for (k = 0; k <= l; k++)
				scale += fabs(a[i][k]);
			if (scale == 0.0)
				e[i] = a[i][l];
			else
			{
				for (k = 0; k <= l; k++)
				{
					a[i][k] /= scale;
					h += a[i][k] * a[i][k];
				}
				f = a[i][l];
				g = f>0 ? -sqrt(h) : sqrt(h);
				e[i] = scale * g;
				h -= f * g;
				a[i][l] = f - g;
				f = 0.0;
				for (j = 0; j <= l; j++)
				{
					a[j][i] = a[i][j]/h;
					g = 0.0;
					for (k = 0; k <= j; k++)
						g += a[j][k] * a[i][k];
					for (k = j+1; k <= l; k++)
						g += a[k][j] * a[i][k];
					e[j] = g / h;
					f += e[j] * a[i][j];
				}
				hh = f / (h + h);
				for (j = 0; j <= l; j++)
				{
					f = a[i][j];
					e[j] = g = e[j] - hh * f;
					for (k = 0; k <= j; k++)
						a[j][k] -= (f * e[k] + g * a[i][k]);
				}
			}
		}
		else
			e[i] = a[i][l];
		d[i] = h;
    }
	d[0] = 0.0;
	e[0] = 0.0;
	for (i = 0; i < n; i++)
    {
		l = i - 1;
		if (d[i])
		{
			for (j = 0; j <= l; j++)
			{
				g = 0.0;
				for (k = 0; k <= l; k++)
					g += a[i][k] * a[k][j];
				for (k = 0; k <= l; k++)
					a[k][j] -= g * a[k][i];
			}
		}
		d[i] = a[i][i];
		a[i][i] = 1.0;
		for (j = 0; j <= l; j++)
			a[j][i] = a[i][j] = 0.0;
    }
}

/**  Tridiagonal QL algorithm -- Implicit  **********************/

void tqli(double* d, double* e, int n, double** z)
{
	int m, l, iter, i, k;
	double s, r, p, g, f, dd, c, b;
	
	for (i = 1; i < n; i++)
		e[i-1] = e[i];
	e[n-1] = 0.0;
	for (l = 0; l < n; l++)
    {
		iter = 0;
		do
		{
			for (m = l; m < n-1; m++)
			{
				dd = fabs(d[m]) + fabs(d[m+1]);
				if (fabs(e[m]) + dd == dd) break;
			}
			if (m != l)
			{
				if (iter++ == 30) erhand("No convergence in TLQI.");
				g = (d[l+1] - d[l]) / (2.0 * e[l]);
				r = sqrt((g * g) + 1.0);
				g = d[m] - d[l] + e[l] / (g + SIGN(r, g));
				s = c = 1.0;
				p = 0.0;
				for (i = m-1; i >= l; i--)
				{
					f = s * e[i];
					b = c * e[i];
					if (fabs(f) >= fabs(g))
                    {
						c = g / f;
						r = sqrt((c * c) + 1.0);
						e[i+1] = f * r;
						c *= (s = 1.0/r);
                    }
					else
                    {
						s = f / g;
						r = sqrt((s * s) + 1.0);
						e[i+1] = g * r;
						s *= (c = 1.0/r);
                    }
					g = d[i+1] - p;
					r = (d[i] - g) * s + 2.0 * c * b;
					p = s * r;
					d[i+1] = g + p;
					g = c * r - b;
					for (k = 0; k < n; k++)
					{
						f = z[k][i+1];
						z[k][i+1] = s * z[k][i] + c * f;
						z[k][i] = c * z[k][i] - s * f;
					}
				}
				d[l] = d[l] - p;
				e[l] = g;
				e[m] = 0.0;
			}
		}  while (m != l);
	}
}

/* In place projection onto basis vectors */
void pca_project(double** data, int n, int m, int ncomponents)
{
	int  i, j, k, k2;
	double  **symmat, **symmat2, *evals, *interm;
	
	//TODO: assert ncomponents < m
	
	symmat = (double**) malloc(m*sizeof(double*));
	for (i = 0; i < m; i++)
		symmat[i] = (double*) malloc(m*sizeof(double));
		
	covcol(data, n, m, symmat);
	
	/*********************************************************************
		Eigen-reduction
		**********************************************************************/
	
    /* Allocate storage for dummy and new vectors. */
    evals = (double*) malloc(m*sizeof(double));     /* Storage alloc. for vector of eigenvalues */
    interm = (double*) malloc(m*sizeof(double));    /* Storage alloc. for 'intermediate' vector */
    //MALLOC_ARRAY(symmat2,m,m,double);
	//for (i = 0; i < m; i++) {
	//	for (j = 0; j < m; j++) {
	//		symmat2[i][j] = symmat[i][j]; /* Needed below for col. projections */
	//	}
	//}
    tred2(symmat, m, evals, interm);  /* Triangular decomposition */
tqli(evals, interm, m, symmat);   /* Reduction of sym. trid. matrix */
/* evals now contains the eigenvalues,
columns of symmat now contain the associated eigenvectors. */	

/*
	printf("\nEigenvalues:\n");
	for (j = m-1; j >= 0; j--) {
		printf("%18.5f\n", evals[j]); }
	printf("\n(Eigenvalues should be strictly positive; limited\n");
	printf("precision machine arithmetic may affect this.\n");
	printf("Eigenvalues are often expressed as cumulative\n");
	printf("percentages, representing the 'percentage variance\n");
	printf("explained' by the associated axis or principal component.)\n");
	
	printf("\nEigenvectors:\n");
	printf("(First three; their definition in terms of original vbes.)\n");
	for (j = 0; j < m; j++) {
		for (i = 1; i <= 3; i++)  {
			printf("%12.4f", symmat[j][m-i]);  }
		printf("\n");  }
 */

/* Form projections of row-points on prin. components. */
/* Store in 'data', overwriting original data. */
for (i = 0; i < n; i++) {
	for (j = 0; j < m; j++) {
		interm[j] = data[i][j]; }   /* data[i][j] will be overwritten */
        for (k = 0; k < ncomponents; k++) {
			data[i][k] = 0.0;
			for (k2 = 0; k2 < m; k2++) {
				data[i][k] += interm[k2] * symmat[k2][m-k-1]; }
        }
}

/*	
printf("\nProjections of row-points on first 3 prin. comps.:\n");
 for (i = 0; i < n; i++) {
	 for (j = 0; j < 3; j++)  {
		 printf("%12.4f", data[i][j]);  }
	 printf("\n");  }
 */

/* Form projections of col.-points on first three prin. components. */
/* Store in 'symmat2', overwriting what was stored in this. */
//for (j = 0; j < m; j++) {
//	 for (k = 0; k < m; k++) {
//		 interm[k] = symmat2[j][k]; }  /*symmat2[j][k] will be overwritten*/
//  for (i = 0; i < 3; i++) {
//	symmat2[j][i] = 0.0;
//		for (k2 = 0; k2 < m; k2++) {
//			symmat2[j][i] += interm[k2] * symmat[k2][m-i-1]; }
//		if (evals[m-i-1] > 0.0005)   /* Guard against zero eigenvalue */
//			symmat2[j][i] /= sqrt(evals[m-i-1]);   /* Rescale */
//		else
//			symmat2[j][i] = 0.0;    /* Standard kludge */
//    }
// }

/*
 printf("\nProjections of column-points on first 3 prin. comps.:\n");
 for (j = 0; j < m; j++) {
	 for (k = 0; k < 3; k++)  {
		 printf("%12.4f", symmat2[j][k]);  }
	 printf("\n");  }
	*/


for (i = 0; i < m; i++)
	free(symmat[i]);
free(symmat);
//FREE_ARRAY(symmat2,m);
free(evals);
free(interm);

}