summaryrefslogtreecommitdiff
path: root/libs/panners/vbap/vbap_speakers.cc
blob: 24022f0f528b65d81c0b4624d659d5eed6ad4f64 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
/*
   This software is being provided to you, the licensee, by Ville Pulkki,
   under the following license. By obtaining, using and/or copying this
   software, you agree that you have read, understood, and will comply
   with these terms and conditions: Permission to use, copy, modify and
   distribute, including the right to grant others rights to distribute
   at any tier, this software and its documentation for any purpose and
   without fee or royalty is hereby granted, provided that you agree to
   comply with the following copyright notice and statements, including
   the disclaimer, and that the same appear on ALL copies of the software
   and documentation, including modifications that you make for internal
   use or for distribution:

   Copyright 1998 by Ville Pulkki, Helsinki University of Technology.  All
   rights reserved.

   The software may be used, distributed, and included to commercial
   products without any charges. When included to a commercial product,
   the method "Vector Base Amplitude Panning" and its developer Ville
   Pulkki must be referred to in documentation.

   This software is provided "as is", and Ville Pulkki or Helsinki
   University of Technology make no representations or warranties,
   expressed or implied. By way of example, but not limitation, Helsinki
   University of Technology or Ville Pulkki make no representations or
   warranties of merchantability or fitness for any particular purpose or
   that the use of the licensed software or documentation will not
   infringe any third party patents, copyrights, trademarks or other
   rights. The name of Ville Pulkki or Helsinki University of Technology
   may not be used in advertising or publicity pertaining to distribution
   of the software.
*/

#include <algorithm>
#include <cmath>
#include <stdlib.h>

#include "pbd/cartesian.h"

#include "vbap_speakers.h"

using namespace ARDOUR;
using namespace PBD;
using namespace std;

const double VBAPSpeakers::MIN_VOL_P_SIDE_LGTH = 0.01;

VBAPSpeakers::VBAPSpeakers (boost::shared_ptr<Speakers> s)
	: _dimension (2)
	, _parent (s)
{
	_parent->Changed.connect_same_thread (speaker_connection, boost::bind (&VBAPSpeakers::update, this));
	update ();
}

VBAPSpeakers::~VBAPSpeakers ()
{
}

void
VBAPSpeakers::update ()
{
	int dim = 2;

	_speakers = _parent->speakers ();

	for (vector<Speaker>::const_iterator i = _speakers.begin (); i != _speakers.end (); ++i) {
		if ((*i).angles ().ele != 0.0) {
			dim = 3;
			break;
		}
	}

	_dimension = dim;

	if (_speakers.size () < 2) {
		/* nothing to be done with less than two speakers */
		return;
	}

	if (_dimension == 3) {
		ls_triplet_chain* ls_triplets = 0;
		choose_speaker_triplets (&ls_triplets);
		if (ls_triplets) {
			calculate_3x3_matrixes (ls_triplets);
			free (ls_triplets);
		}
	} else {
		choose_speaker_pairs ();
	}
}

void
VBAPSpeakers::choose_speaker_triplets (struct ls_triplet_chain** ls_triplets)
{
	/* Selects the loudspeaker triplets, and
	 * calculates the inversion matrices for each selected triplet.
	 * A line (connection) is drawn between each loudspeaker. The lines
	 * denote the sides of the triangles. The triangles should not be
	 * intersecting. All crossing connections are searched and the
	 * longer connection is erased. This yields non-intesecting triangles,
	 * which can be used in panning.
	 */

#if 0 // DEVEL/DEBUG
	for (vector<Speaker>::iterator i = _speakers.begin(); i != _speakers.end(); ++i) {
		cout << "Speaker " << (*i).id << " @ "
		  << (*i).coords().x << ", " << (*i).coords().y << ", " << (*i).coords().z
		  << " azimuth " << (*i).angles().azi
		  << " elevation " << (*i).angles().ele
		  << " distance " << (*i).angles().length
		  << endl;
	}
#endif

	int i, j, k, l, table_size;
	int n_speakers = _speakers.size ();

	if (n_speakers < 3) {
		fprintf (stderr, "VBAP: at least 3 speakers need to be defined.");
		return;
	}

	/* variable length arrays arrived in C99, became optional in C11, and
	 * are only planned for C++14. Use alloca which is functionally
	 * identical (but uglier to read).
	 */
	int*   connections      = (int*)alloca (sizeof (int) * n_speakers * n_speakers);
	float* distance_table   = (float*)alloca (sizeof (float) * ((n_speakers * (n_speakers - 1)) / 2));
	int*   distance_table_i = (int*)alloca (sizeof (int) * ((n_speakers * (n_speakers - 1)) / 2));
	int*   distance_table_j = (int*)alloca (sizeof (int) * ((n_speakers * (n_speakers - 1)) / 2));
	float  distance;

	struct ls_triplet_chain *trip_ptr, *prev, *tmp_ptr;

	for (i = 0; i < n_speakers * n_speakers; i++) {
		connections[i] = 0;
	}

	for (i = 0; i < n_speakers; i++) {
		for (j = i + 1; j < n_speakers; j++) {
			for (k = j + 1; k < n_speakers; k++) {
				if (vol_p_side_lgth (i, j, k, _speakers) > MIN_VOL_P_SIDE_LGTH) {
					connections[(i * n_speakers) + j] = 1;
					connections[(j * n_speakers) + i] = 1;
					connections[(i * n_speakers) + k] = 1;
					connections[(k * n_speakers) + i] = 1;
					connections[(j * n_speakers) + k] = 1;
					connections[(k * n_speakers) + j] = 1;
					add_ldsp_triplet (i, j, k, ls_triplets);
				}
			}
		}
	}

	/*calculate distancies between all speakers and sorting them*/
	table_size = (((n_speakers - 1) * (n_speakers)) / 2);
	for (i = 0; i < table_size; i++) {
		distance_table[i] = 100000.0;
	}

	for (i = 0; i < n_speakers; i++) {
		for (j = i + 1; j < n_speakers; j++) {
			if (connections[(i * n_speakers) + j] == 1) {
				distance = fabs (vec_angle (_speakers[i].coords (), _speakers[j].coords ()));
				k        = 0;
				while (distance_table[k] < distance) {
					k++;
				}
				for (l = table_size - 1; l > k; l--) {
					distance_table[l]   = distance_table[l - 1];
					distance_table_i[l] = distance_table_i[l - 1];
					distance_table_j[l] = distance_table_j[l - 1];
				}
				distance_table[k]   = distance;
				distance_table_i[k] = i;
				distance_table_j[k] = j;
			} else
				table_size--;
		}
	}

	/* disconnecting connections which are crossing shorter ones,
	 * starting from shortest one and removing all that cross it,
	 * and proceeding to next shortest */
	for (i = 0; i < table_size; i++) {
		int fst_ls = distance_table_i[i];
		int sec_ls = distance_table_j[i];
		if (connections[(fst_ls * n_speakers) + sec_ls] == 1) {
			for (j = 0; j < n_speakers; j++) {
				for (k = j + 1; k < n_speakers; k++) {
					if ((j != fst_ls) && (k != sec_ls) && (k != fst_ls) && (j != sec_ls)) {
						if (lines_intersect (fst_ls, sec_ls, j, k) == 1) {
							connections[(j * n_speakers) + k] = 0;
							connections[(k * n_speakers) + j] = 0;
						}
					}
				}
			}
		}
	}

	/* remove triangles which had crossing sides
	 * with smaller triangles or include loudspeakers*/
	trip_ptr = *ls_triplets;
	prev     = 0;
	while (trip_ptr != 0) {
		i = trip_ptr->ls_nos[0];
		j = trip_ptr->ls_nos[1];
		k = trip_ptr->ls_nos[2];
		if (connections[(i * n_speakers) + j] == 0 ||
		    connections[(i * n_speakers) + k] == 0 ||
		    connections[(j * n_speakers) + k] == 0 ||
		    any_ls_inside_triplet (i, j, k) == 1) {
			if (prev != 0) {
				prev->next = trip_ptr->next;
				tmp_ptr    = trip_ptr;
				trip_ptr   = trip_ptr->next;
				free (tmp_ptr);
			} else {
				*ls_triplets = trip_ptr->next;
				tmp_ptr      = trip_ptr;
				trip_ptr     = trip_ptr->next;
				free (tmp_ptr);
			}
		} else {
			prev     = trip_ptr;
			trip_ptr = trip_ptr->next;
		}
	}
}

int
VBAPSpeakers::any_ls_inside_triplet (int a, int b, int c)
{
	/* returns 1 if there is loudspeaker(s) inside given ls triplet */
	float                  invdet;
	const CartesianVector* lp1;
	const CartesianVector* lp2;
	const CartesianVector* lp3;
	float                  invmx[9];
	int                    i, j;
	float                  tmp;
	bool                   any_ls_inside;
	bool                   this_inside;
	int                    n_speakers = _speakers.size ();

	lp1 = &(_speakers[a].coords ());
	lp2 = &(_speakers[b].coords ());
	lp3 = &(_speakers[c].coords ());

	/* matrix inversion */
	invdet = 1.0 / (  lp1->x * ((lp2->y * lp3->z) - (lp2->z * lp3->y))
	                - lp1->y * ((lp2->x * lp3->z) - (lp2->z * lp3->x))
	                + lp1->z * ((lp2->x * lp3->y) - (lp2->y * lp3->x)));

	invmx[0] = ((lp2->y * lp3->z) - (lp2->z * lp3->y)) * invdet;
	invmx[3] = ((lp1->y * lp3->z) - (lp1->z * lp3->y)) * -invdet;
	invmx[6] = ((lp1->y * lp2->z) - (lp1->z * lp2->y)) * invdet;
	invmx[1] = ((lp2->x * lp3->z) - (lp2->z * lp3->x)) * -invdet;
	invmx[4] = ((lp1->x * lp3->z) - (lp1->z * lp3->x)) * invdet;
	invmx[7] = ((lp1->x * lp2->z) - (lp1->z * lp2->x)) * -invdet;
	invmx[2] = ((lp2->x * lp3->y) - (lp2->y * lp3->x)) * invdet;
	invmx[5] = ((lp1->x * lp3->y) - (lp1->y * lp3->x)) * -invdet;
	invmx[8] = ((lp1->x * lp2->y) - (lp1->y * lp2->x)) * invdet;

	any_ls_inside = false;
	for (i = 0; i < n_speakers; i++) {
		if (i != a && i != b && i != c) {
			this_inside = true;
			for (j = 0; j < 3; j++) {
				tmp = _speakers[i].coords ().x * invmx[0 + j * 3];
				tmp += _speakers[i].coords ().y * invmx[1 + j * 3];
				tmp += _speakers[i].coords ().z * invmx[2 + j * 3];
				if (tmp < -0.001) {
					this_inside = false;
				}
			}
			if (this_inside) {
				any_ls_inside = true;
			}
		}
	}

	return any_ls_inside;
}

void
VBAPSpeakers::add_ldsp_triplet (int i, int j, int k, struct ls_triplet_chain** ls_triplets)
{
	/* adds i,j,k triplet to triplet chain*/

	struct ls_triplet_chain *trip_ptr, *prev;
	trip_ptr = *ls_triplets;
	prev     = 0;

	while (trip_ptr != 0) {
		prev     = trip_ptr;
		trip_ptr = trip_ptr->next;
	}

	trip_ptr = (struct ls_triplet_chain*)malloc (sizeof (struct ls_triplet_chain));

	if (prev == 0) {
		*ls_triplets = trip_ptr;
	} else {
		prev->next = trip_ptr;
	}

	trip_ptr->next      = 0;
	trip_ptr->ls_nos[0] = i;
	trip_ptr->ls_nos[1] = j;
	trip_ptr->ls_nos[2] = k;
}

double
VBAPSpeakers::vec_angle (CartesianVector v1, CartesianVector v2)
{
	double inner = ((v1.x * v2.x + v1.y * v2.y + v1.z * v2.z) /
	                (vec_length (v1) * vec_length (v2)));

	if (inner > 1.0) {
		inner = 1.0;
	}

	if (inner < -1.0) {
		inner = -1.0;
	}

	return fabs (acos (inner));
}

double
VBAPSpeakers::vec_length (CartesianVector v1)
{
	double rv = sqrt (v1.x * v1.x + v1.y * v1.y + v1.z * v1.z);
	if (rv > 1e-14)
		return rv;
	return 0;
}

double
VBAPSpeakers::vec_prod (CartesianVector v1, CartesianVector v2)
{
	return (v1.x * v2.x + v1.y * v2.y + v1.z * v2.z);
}

double
VBAPSpeakers::vol_p_side_lgth (int i, int j, int k, const vector<Speaker>& speakers)
{
	/* calculate volume of the parallelepiped defined by the loudspeaker
	 * direction vectors and divide it with total length of the triangle sides.
	 * This is used when removing too narrow triangles. */

	double          volper, lgth;
	CartesianVector xprod;
	cross_prod (speakers[i].coords (), speakers[j].coords (), &xprod);
	volper = fabs (vec_prod (xprod, speakers[k].coords ()));
	lgth   = (fabs (vec_angle (speakers[i].coords (), speakers[j].coords ())) + fabs (vec_angle (speakers[i].coords (), speakers[k].coords ())) + fabs (vec_angle (speakers[j].coords (), speakers[k].coords ())));
	if (lgth > 0.00001) {
		return volper / lgth;
	} else {
		return 0.0;
	}
}

void
VBAPSpeakers::cross_prod (CartesianVector v1, CartesianVector v2, CartesianVector* res)
{
	double length;

	res->x = (v1.y * v2.z) - (v1.z * v2.y);
	res->y = (v1.z * v2.x) - (v1.x * v2.z);
	res->z = (v1.x * v2.y) - (v1.y * v2.x);

	length = vec_length (*res);
	if (length > 0) {
		res->x /= length;
		res->y /= length;
		res->z /= length;
	} else {
		res->x = 0;
		res->y = 0;
		res->z = 0;
	}
}

int
VBAPSpeakers::lines_intersect (int i, int j, int k, int l)
{
	/* checks if two lines intersect on 3D sphere
	 * see theory in paper Pulkki, V. Lokki, T. "Creating Auditory Displays
	 * with Multiple Loudspeakers Using VBAP: A Case Study with
	 * DIVA Project" in International Conference on
	 * Auditory Displays -98. E-mail Ville.Pulkki@hut.fi
	 * if you want to have that paper.
	 */

	CartesianVector v1;
	CartesianVector v2;
	CartesianVector v3, neg_v3;

	float dist_ij, dist_kl, dist_iv3, dist_jv3, dist_inv3, dist_jnv3;
	float dist_kv3, dist_lv3, dist_knv3, dist_lnv3;

	cross_prod (_speakers[i].coords (), _speakers[j].coords (), &v1);
	cross_prod (_speakers[k].coords (), _speakers[l].coords (), &v2);
	cross_prod (v1, v2, &v3);

	neg_v3.x = 0.0 - v3.x;
	neg_v3.y = 0.0 - v3.y;
	neg_v3.z = 0.0 - v3.z;

	dist_ij   = (vec_angle (_speakers[i].coords (), _speakers[j].coords ()));
	dist_kl   = (vec_angle (_speakers[k].coords (), _speakers[l].coords ()));
	dist_iv3  = (vec_angle (_speakers[i].coords (), v3));
	dist_jv3  = (vec_angle (v3, _speakers[j].coords ()));
	dist_inv3 = (vec_angle (_speakers[i].coords (), neg_v3));
	dist_jnv3 = (vec_angle (neg_v3, _speakers[j].coords ()));
	dist_kv3  = (vec_angle (_speakers[k].coords (), v3));
	dist_lv3  = (vec_angle (v3, _speakers[l].coords ()));
	dist_knv3 = (vec_angle (_speakers[k].coords (), neg_v3));
	dist_lnv3 = (vec_angle (neg_v3, _speakers[l].coords ()));

	/* if one of loudspeakers is close to crossing point, don't do anything*/
	if (fabsf (dist_iv3) <= 0.01 || fabsf (dist_jv3) <= 0.01 ||
	    fabsf (dist_kv3) <= 0.01 || fabsf (dist_lv3) <= 0.01 ||
	    fabsf (dist_inv3) <= 0.01 || fabsf (dist_jnv3) <= 0.01 ||
	    fabsf (dist_knv3) <= 0.01 || fabsf (dist_lnv3) <= 0.01) {
		return (0);
	}

	/* if crossing point is on line between both loudspeakers return 1 */
	if (((fabsf (dist_ij - (dist_iv3 + dist_jv3)) <= 0.01) &&
	     (fabsf (dist_kl - (dist_kv3 + dist_lv3)) <= 0.01)) ||
	    ((fabsf (dist_ij - (dist_inv3 + dist_jnv3)) <= 0.01) &&
	     (fabsf (dist_kl - (dist_knv3 + dist_lnv3)) <= 0.01))) {
		return (1);
	} else {
		return (0);
	}
}

void
VBAPSpeakers::calculate_3x3_matrixes (struct ls_triplet_chain* ls_triplets)
{
	/* Calculates the inverse matrices for 3D */
	float                    invdet;
	const CartesianVector*   lp1;
	const CartesianVector*   lp2;
	const CartesianVector*   lp3;
	float*                   invmx;
	struct ls_triplet_chain* tr_ptr        = ls_triplets;
	int                      triplet_count = 0;
	int                      triplet;

	assert (tr_ptr);

	/* counting triplet amount */

	while (tr_ptr != 0) {
		triplet_count++;
		tr_ptr = tr_ptr->next;
	}

#if 0 // DEVEL/DEBUG
	cerr << "@@@ VBAP triplets generate " << triplet_count << " of speaker tuples\n";
#endif

	triplet = 0;

	_matrices.clear ();
	_speaker_tuples.clear ();

	for (int n = 0; n < triplet_count; ++n) {
		_matrices.push_back (threeDmatrix ());
		_speaker_tuples.push_back (tmatrix ());
	}

	tr_ptr = ls_triplets;
	while (tr_ptr != 0) {
		lp1 = &(_speakers[tr_ptr->ls_nos[0]].coords ());
		lp2 = &(_speakers[tr_ptr->ls_nos[1]].coords ());
		lp3 = &(_speakers[tr_ptr->ls_nos[2]].coords ());

		/* matrix inversion */
		invmx  = tr_ptr->inv_mx;
		invdet = 1.0 / (  lp1->x * ((lp2->y * lp3->z) - (lp2->z * lp3->y))
		                - lp1->y * ((lp2->x * lp3->z) - (lp2->z * lp3->x))
		                + lp1->z * ((lp2->x * lp3->y) - (lp2->y * lp3->x)));

		invmx[0] = ((lp2->y * lp3->z) - (lp2->z * lp3->y)) * invdet;
		invmx[3] = ((lp1->y * lp3->z) - (lp1->z * lp3->y)) * -invdet;
		invmx[6] = ((lp1->y * lp2->z) - (lp1->z * lp2->y)) * invdet;
		invmx[1] = ((lp2->x * lp3->z) - (lp2->z * lp3->x)) * -invdet;
		invmx[4] = ((lp1->x * lp3->z) - (lp1->z * lp3->x)) * invdet;
		invmx[7] = ((lp1->x * lp2->z) - (lp1->z * lp2->x)) * -invdet;
		invmx[2] = ((lp2->x * lp3->y) - (lp2->y * lp3->x)) * invdet;
		invmx[5] = ((lp1->x * lp3->y) - (lp1->y * lp3->x)) * -invdet;
		invmx[8] = ((lp1->x * lp2->y) - (lp1->y * lp2->x)) * invdet;

		/* copy the matrix */

		_matrices[triplet][0] = invmx[0];
		_matrices[triplet][1] = invmx[1];
		_matrices[triplet][2] = invmx[2];
		_matrices[triplet][3] = invmx[3];
		_matrices[triplet][4] = invmx[4];
		_matrices[triplet][5] = invmx[5];
		_matrices[triplet][6] = invmx[6];
		_matrices[triplet][7] = invmx[7];
		_matrices[triplet][8] = invmx[8];

		_speaker_tuples[triplet][0] = tr_ptr->ls_nos[0];
		_speaker_tuples[triplet][1] = tr_ptr->ls_nos[1];
		_speaker_tuples[triplet][2] = tr_ptr->ls_nos[2];

#if 0 // DEVEL/DEBUG
		cerr << "Triplet[" << triplet << "] = "
		     << tr_ptr->ls_nos[0] << " + "
		     << tr_ptr->ls_nos[1] << " + "
		     << tr_ptr->ls_nos[2] << endl;
#endif

		triplet++;

		tr_ptr = tr_ptr->next;
	}
}

void
VBAPSpeakers::choose_speaker_pairs ()
{
	/* selects the loudspeaker pairs, calculates the inversion
	 * matrices and stores the data to a global array
	*/
	const int n_speakers = _speakers.size ();

	if (n_speakers < 2) {
		fprintf (stderr, "VBAP: at least 2 speakers need to be defined.");
		return;
	}

	const double AZIMUTH_DELTA_THRESHOLD_DEGREES = (180.0 / M_PI) * (M_PI - 0.175);
	/* variable length arrays arrived in C99, became optional in C11, and
	 * are only planned for C++14. Use alloca which is functionally
	 * identical (but uglier to read).
	 */
	int*    sorted_speakers = (int*)alloca (sizeof (int) * n_speakers);
	bool*   exists          = (bool*)alloca (sizeof (bool) * n_speakers);
	double* inverse_matrix  = (double*)alloca (sizeof (double) * n_speakers * 4);
	int     expected_pairs  = 0;
	int     pair;
	int     speaker;

	for (speaker = 0; speaker < n_speakers; ++speaker) {
		exists[speaker] = false;
	}

	/* sort loudspeakers according their aximuth angle */
#ifdef __clang_analyzer__
	// sort_2D_lss() assigns values to all of sorted_speakers
	// "uninitialized value"
	memset (sorted_speakers, 0, sizeof (*sorted_speakers));
#endif
	sort_2D_lss (sorted_speakers);

	/* adjacent loudspeakers are the loudspeaker pairs to be used.*/
	for (speaker = 0; speaker < n_speakers - 1; speaker++) {
		if ((_speakers[sorted_speakers[speaker + 1]].angles ().azi -
		     _speakers[sorted_speakers[speaker]].angles ().azi) <= AZIMUTH_DELTA_THRESHOLD_DEGREES) {
			if (calc_2D_inv_tmatrix (_speakers[sorted_speakers[speaker]].angles ().azi,
			                         _speakers[sorted_speakers[speaker + 1]].angles ().azi,
			                         &inverse_matrix[4 * speaker]) != 0) {
				exists[speaker] = true;
				expected_pairs++;
			}
		}
	}

	if (((6.283 - _speakers[sorted_speakers[n_speakers - 1]].angles ().azi) + _speakers[sorted_speakers[0]].angles ().azi) <= AZIMUTH_DELTA_THRESHOLD_DEGREES) {
		if (calc_2D_inv_tmatrix (_speakers[sorted_speakers[n_speakers - 1]].angles ().azi,
		                         _speakers[sorted_speakers[0]].angles ().azi,
		                         &inverse_matrix[4 * (n_speakers - 1)]) != 0) {
			exists[n_speakers - 1] = true;
			expected_pairs++;
		}
	}

	pair = 0;

	_matrices.clear ();
	_speaker_tuples.clear ();

	for (int n = 0; n < expected_pairs; ++n) {
		_matrices.push_back (twoDmatrix ());
		_speaker_tuples.push_back (tmatrix ());
	}

	for (speaker = 0; speaker < n_speakers - 1; speaker++) {
		if (exists[speaker]) {
			_matrices[pair][0] = inverse_matrix[(speaker * 4) + 0];
			_matrices[pair][1] = inverse_matrix[(speaker * 4) + 1];
			_matrices[pair][2] = inverse_matrix[(speaker * 4) + 2];
			_matrices[pair][3] = inverse_matrix[(speaker * 4) + 3];

			_speaker_tuples[pair][0] = sorted_speakers[speaker];
			_speaker_tuples[pair][1] = sorted_speakers[speaker + 1];

			pair++;
		}
	}

	if (exists[n_speakers - 1]) {
		_matrices[pair][0] = inverse_matrix[(speaker * 4) + 0];
		_matrices[pair][1] = inverse_matrix[(speaker * 4) + 1];
		_matrices[pair][2] = inverse_matrix[(speaker * 4) + 2];
		_matrices[pair][3] = inverse_matrix[(speaker * 4) + 3];

		_speaker_tuples[pair][0] = sorted_speakers[n_speakers - 1];
		_speaker_tuples[pair][1] = sorted_speakers[0];
	}
}

void
VBAPSpeakers::sort_2D_lss (int* sorted_speakers)
{
	vector<Speaker>           tmp = _speakers;
	vector<Speaker>::iterator s;
	azimuth_sorter            sorter;
	unsigned int              n;

	sort (tmp.begin (), tmp.end (), sorter);

	for (n = 0, s = tmp.begin (); s != tmp.end (); ++s, ++n) {
		sorted_speakers[n] = (*s).id;
	}
	assert (n == _speakers.size ());
}

int
VBAPSpeakers::calc_2D_inv_tmatrix (double azi1, double azi2, double* inverse_matrix)
{
	double x1, x2, x3, x4;
	double det;

	x1  = cos (azi1 * (M_PI / 180.0));
	x2  = sin (azi1 * (M_PI / 180.0));
	x3  = cos (azi2 * (M_PI / 180.0));
	x4  = sin (azi2 * (M_PI / 180.0));
	det = (x1 * x4) - (x3 * x2);

	if (fabs (det) <= 0.001) {
		inverse_matrix[0] = 0.0;
		inverse_matrix[1] = 0.0;
		inverse_matrix[2] = 0.0;
		inverse_matrix[3] = 0.0;

		return 0;

	} else {
		inverse_matrix[0] = x4 / det;
		inverse_matrix[1] = -x3 / det;
		inverse_matrix[2] = -x2 / det;
		inverse_matrix[3] = x1 / det;

		return 1;
	}
}