/* Copyright (C) 1998-2006 Paul Davis This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include /* for sprintf, sigh */ #include #include #include #include #include #include #include "midicontrollable.h" using namespace sigc; using namespace MIDI; using namespace PBD; using namespace ARDOUR; MIDIControllable::MIDIControllable (Port& p, Controllable& c, bool is_bistate) : controllable (c), _port (p), bistate (is_bistate) { setting = false; last_value = 0; // got a better idea ? control_type = none; _control_description = "MIDI Control: none"; control_additional = (byte) -1; connections = 0; feedback = true; // for now /* use channel 0 ("1") as the initial channel */ midi_rebind (0); } MIDIControllable::~MIDIControllable () { drop_external_control (); } void MIDIControllable::midi_forget () { /* stop listening for incoming messages, but retain our existing event + type information. */ if (connections > 0) { midi_sense_connection[0].disconnect (); } if (connections > 1) { midi_sense_connection[1].disconnect (); } connections = 0; midi_learn_connection.disconnect (); } void MIDIControllable::midi_rebind (channel_t c) { if (c >= 0) { bind_midi (c, control_type, control_additional); } else { midi_forget (); } } void MIDIControllable::learn_about_external_control () { drop_external_control (); midi_learn_connection = _port.input()->any.connect (mem_fun (*this, &MIDIControllable::midi_receiver)); } void MIDIControllable::stop_learning () { midi_learn_connection.disconnect (); } void MIDIControllable::drop_external_control () { if (connections > 0) { midi_sense_connection[0].disconnect (); } if (connections > 1) { midi_sense_connection[1].disconnect (); } connections = 0; midi_learn_connection.disconnect (); control_type = none; control_additional = (byte) -1; } float MIDIControllable::control_to_midi(float val) { float control_min = 0.0f; float control_max = 1.0f; ARDOUR::AutomationControl* ac = dynamic_cast(&controllable); if (ac) { control_min = ac->parameter().min(); control_max = ac->parameter().max(); } const float control_range = control_max - control_min; const float midi_range = 127.0f; // TODO: NRPN etc. return (val - control_min) / control_range * midi_range; } float MIDIControllable::midi_to_control(float val) { float control_min = 0.0f; float control_max = 1.0f; ARDOUR::AutomationControl* ac = dynamic_cast(&controllable); if (ac) { control_min = ac->parameter().min(); control_max = ac->parameter().max(); } const float control_range = control_max - control_min; const float midi_range = 127.0f; // TODO: NRPN etc. return val / midi_range * control_range + control_min; } void MIDIControllable::midi_sense_note_on (Parser &p, EventTwoBytes *tb) { midi_sense_note (p, tb, true); } void MIDIControllable::midi_sense_note_off (Parser &p, EventTwoBytes *tb) { midi_sense_note (p, tb, false); } void MIDIControllable::midi_sense_note (Parser &, EventTwoBytes *msg, bool is_on) { if (!bistate) { controllable.set_value (msg->note_number/127.0); } else { /* Note: parser handles the use of zero velocity to mean note off. if we get called with is_on=true, then we got a *real* note on. */ if (msg->note_number == control_additional) { controllable.set_value (is_on ? 1 : 0); } } last_value = (MIDI::byte) (controllable.get_value() * 127.0); // to prevent feedback fights } void MIDIControllable::midi_sense_controller (Parser &, EventTwoBytes *msg) { if (controllable.touching()) { return; // to prevent feedback fights when e.g. dragging a UI slider } if (control_additional == msg->controller_number) { if (!bistate) { controllable.set_value (midi_to_control(msg->value)); } else { if (msg->value > 64.0) { controllable.set_value (1); } else { controllable.set_value (0); } } last_value = (MIDI::byte) (control_to_midi(controllable.get_value())); // to prevent feedback fights } } void MIDIControllable::midi_sense_program_change (Parser &, byte msg) { /* XXX program change messages make no sense for bistates */ if (!bistate) { controllable.set_value (msg/127.0); last_value = (MIDI::byte) (controllable.get_value() * 127.0); // to prevent feedback fights } } void MIDIControllable::midi_sense_pitchbend (Parser &, pitchbend_t pb) { /* pitchbend messages make no sense for bistates */ /* XXX gack - get rid of assumption about typeof pitchbend_t */ controllable.set_value ((pb/(float) SHRT_MAX)); last_value = (MIDI::byte) (controllable.get_value() * 127.0); // to prevent feedback fights } void MIDIControllable::midi_receiver (Parser &, byte *msg, size_t /*len*/) { /* we only respond to channel messages */ if ((msg[0] & 0xF0) < 0x80 || (msg[0] & 0xF0) > 0xE0) { return; } /* if the our port doesn't do input anymore, forget it ... */ if (!_port.input()) { return; } bind_midi ((channel_t) (msg[0] & 0xf), eventType (msg[0] & 0xF0), msg[1]); controllable.LearningFinished (); } void MIDIControllable::bind_midi (channel_t chn, eventType ev, MIDI::byte additional) { char buf[64]; drop_external_control (); control_type = ev; control_channel = chn; control_additional = additional; if (_port.input() == 0) { return; } Parser& p = *_port.input(); int chn_i = chn; switch (ev) { case MIDI::off: midi_sense_connection[0] = p.channel_note_off[chn_i].connect (mem_fun (*this, &MIDIControllable::midi_sense_note_off)); /* if this is a bistate, connect to noteOn as well, and we'll toggle back and forth between the two. */ if (bistate) { midi_sense_connection[1] = p.channel_note_on[chn_i].connect (mem_fun (*this, &MIDIControllable::midi_sense_note_on)); connections = 2; } else { connections = 1; } _control_description = "MIDI control: NoteOff"; break; case MIDI::on: midi_sense_connection[0] = p.channel_note_on[chn_i].connect (mem_fun (*this, &MIDIControllable::midi_sense_note_on)); if (bistate) { midi_sense_connection[1] = p.channel_note_off[chn_i].connect (mem_fun (*this, &MIDIControllable::midi_sense_note_off)); connections = 2; } else { connections = 1; } _control_description = "MIDI control: NoteOn"; break; case MIDI::controller: midi_sense_connection[0] = p.channel_controller[chn_i].connect (mem_fun (*this, &MIDIControllable::midi_sense_controller)); connections = 1; snprintf (buf, sizeof (buf), "MIDI control: Controller %d", control_additional); _control_description = buf; break; case MIDI::program: if (!bistate) { midi_sense_connection[0] = p.channel_program_change[chn_i].connect (mem_fun (*this, &MIDIControllable::midi_sense_program_change)); connections = 1; _control_description = "MIDI control: ProgramChange"; } break; case MIDI::pitchbend: if (!bistate) { midi_sense_connection[0] = p.channel_pitchbend[chn_i].connect (mem_fun (*this, &MIDIControllable::midi_sense_pitchbend)); connections = 1; _control_description = "MIDI control: Pitchbend"; } break; default: break; } } void MIDIControllable::send_feedback () { byte msg[3]; if (setting || !feedback || control_type == none) { return; } msg[0] = (control_type & 0xF0) | (control_channel & 0xF); msg[1] = control_additional; msg[2] = (byte) (control_to_midi(controllable.get_value())); _port.write (msg, 3, 0); } MIDI::byte* MIDIControllable::write_feedback (MIDI::byte* buf, int32_t& bufsize, bool /*force*/) { if (control_type != none && feedback && bufsize > 2) { MIDI::byte gm = (MIDI::byte) (control_to_midi(controllable.get_value())); if (gm != last_value) { *buf++ = (0xF0 & control_type) | (0xF & control_channel); *buf++ = control_additional; /* controller number */ *buf++ = gm; last_value = gm; bufsize -= 3; } } return buf; } int MIDIControllable::set_state (const XMLNode& node) { const XMLProperty* prop; int xx; if ((prop = node.property ("event")) != 0) { sscanf (prop->value().c_str(), "0x%x", &xx); control_type = (MIDI::eventType) xx; } else { return -1; } if ((prop = node.property ("channel")) != 0) { sscanf (prop->value().c_str(), "%d", &xx); control_channel = (MIDI::channel_t) xx; } else { return -1; } if ((prop = node.property ("additional")) != 0) { sscanf (prop->value().c_str(), "0x%x", &xx); control_additional = (MIDI::byte) xx; } else { return -1; } if ((prop = node.property ("feedback")) != 0) { feedback = (prop->value() == "yes"); } else { feedback = true; // default } bind_midi (control_channel, control_type, control_additional); return 0; } XMLNode& MIDIControllable::get_state () { char buf[32]; XMLNode& node (controllable.get_state ()); snprintf (buf, sizeof(buf), "0x%x", (int) control_type); node.add_property ("event", buf); snprintf (buf, sizeof(buf), "%d", (int) control_channel); node.add_property ("channel", buf); snprintf (buf, sizeof(buf), "0x%x", (int) control_additional); node.add_property ("additional", buf); node.add_property ("feedback", (feedback ? "yes" : "no")); return node; }