/* ihash.c - Integer-keyed hash table functions. Copyright (C) 1993-1997, 2001, 2003, 2004, 2006, 2014, 2015 Free Software Foundation, Inc. Written by Michael I. Bushnell. Revised by Miles Bader . Revised by Marcus Brinkmann . This file is part of the GNU Hurd. The GNU Hurd is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. The GNU Hurd is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with the GNU Hurd; see the file COPYING. If not, write to the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */ #if HAVE_CONFIG_H #include #endif #include #include #include #include #include #include "ihash.h" /* This function is used to hash the key. */ static inline hurd_ihash_key_t hash (hurd_ihash_t ht, hurd_ihash_key_t k) { return ht->fct_hash ? ht->fct_hash ((const void *) k) : k; } /* This function is used to compare the key. Returns true if A is equal to B. */ static inline int compare (hurd_ihash_t ht, hurd_ihash_key_t a, hurd_ihash_key_t b) { return ht->fct_cmp ? (a && ht->fct_cmp ((const void *) a, (const void *) b)) : a == b; } /* Return 1 if the slot with the index IDX in the hash table HT is empty, and 0 otherwise. */ static inline int index_empty (hurd_ihash_t ht, unsigned int idx) { return ! hurd_ihash_value_valid (ht->items[idx].value); } /* Return 1 if the index IDX in the hash table HT is occupied by the element with the key KEY. */ static inline int index_valid (hurd_ihash_t ht, unsigned int idx, hurd_ihash_key_t key) { return !index_empty (ht, idx) && compare (ht, ht->items[idx].key, key); } /* Given a hash table HT, and a key KEY, find the index in the table of that key. You must subsequently check with index_valid() if the returned index is valid. */ static inline int find_index (hurd_ihash_t ht, hurd_ihash_key_t key) { unsigned int idx; unsigned int up_idx; unsigned int first_deleted = 0; int first_deleted_set = 0; unsigned int mask = ht->size - 1; idx = hash (ht, key) & mask; up_idx = idx; do { if (ht->items[up_idx].value == _HURD_IHASH_EMPTY) return first_deleted_set ? first_deleted : up_idx; if (compare (ht, ht->items[up_idx].key, key)) return up_idx; if (! first_deleted_set && ht->items[up_idx].value == _HURD_IHASH_DELETED) first_deleted = up_idx, first_deleted_set = 1; up_idx = (up_idx + 1) & mask; } while (up_idx != idx); /* If we end up here, the item could not be found. Return the index of the first deleted item, as this is the position where we can insert an item with the given key once we established that it is not in the table. */ return first_deleted; } /* Remove the entry pointed to by the location pointer LOCP from the hashtable HT. LOCP is the location pointer of which the address was provided to hurd_ihash_add(). */ static inline void locp_remove (hurd_ihash_t ht, hurd_ihash_locp_t locp) { struct _hurd_ihash_item *item = (struct _hurd_ihash_item *) locp; assert_backtrace (hurd_ihash_value_valid (item->value)); if (ht->cleanup) (*ht->cleanup) (item->value, ht->cleanup_data); item->value = _HURD_IHASH_DELETED; item->key = 0; ht->nr_items--; } /* Construction and destruction of hash tables. */ /* Initialize the hash table at address HT. */ void hurd_ihash_init (hurd_ihash_t ht, intptr_t locp_offs) { ht->nr_items = 0; ht->size = 0; ht->locp_offset = locp_offs; ht->max_load = HURD_IHASH_MAX_LOAD_DEFAULT; ht->cleanup = 0; ht->fct_hash = NULL; ht->fct_cmp = NULL; ht->nr_free = 0; } /* Destroy the hash table at address HT. This first removes all elements which are still in the hash table, and calling the cleanup function for them (if any). */ void hurd_ihash_destroy (hurd_ihash_t ht) { if (ht->cleanup) { hurd_ihash_cleanup_t cleanup = ht->cleanup; void *cleanup_data = ht->cleanup_data; HURD_IHASH_ITERATE (ht, value) (*cleanup) (value, cleanup_data); } if (ht->size > 0) free (ht->items); } /* Create a hash table, initialize it and return it in HT. If a memory allocation error occurs, ENOMEM is returned, otherwise 0. */ error_t hurd_ihash_create (hurd_ihash_t *ht, intptr_t locp_offs) { *ht = malloc (sizeof (struct hurd_ihash)); if (*ht == NULL) return ENOMEM; hurd_ihash_init (*ht, locp_offs); return 0; } /* Destroy the hash table HT and release the memory allocated for it by hurd_ihash_create(). */ void hurd_ihash_free (hurd_ihash_t ht) { hurd_ihash_destroy (ht); free (ht); } /* Set the cleanup function for the hash table HT to CLEANUP. The second argument to CLEANUP will be CLEANUP_DATA on every invocation. */ void hurd_ihash_set_cleanup (hurd_ihash_t ht, hurd_ihash_cleanup_t cleanup, void *cleanup_data) { ht->cleanup = cleanup; ht->cleanup_data = cleanup_data; } /* Use the generalized key interface. Must be called before any item is inserted into the table. */ void hurd_ihash_set_gki (hurd_ihash_t ht, hurd_ihash_fct_hash_t fct_hash, hurd_ihash_fct_cmp_t fct_cmp) { assert (ht->size == 0 || !"called after insertion"); assert (fct_hash); assert (fct_cmp); ht->fct_hash = fct_hash; ht->fct_cmp = fct_cmp; } /* Set the maximum load factor in binary percent to MAX_LOAD, which should be between 64 and 128. The default is HURD_IHASH_MAX_LOAD_DEFAULT. New elements are only added to the hash table while the number of hashed elements is that much binary percent of the total size of the hash table. If more elements are added, the hash table is first expanded and reorganized. A MAX_LOAD of 128 will always fill the whole table before enlarging it, but note that this will increase the cost of operations significantly when the table is almost full. If the value is set to a smaller value than the current load factor, the next reorganization will happen when a new item is added to the hash table. */ void hurd_ihash_set_max_load (hurd_ihash_t ht, unsigned int max_load) { ht->max_load = max_load; } /* Helper function for hurd_ihash_add. Return 1 if the item was added, and 0 if it could not be added because no empty slot was found. The arguments are identical to hurd_ihash_add. We are using open address hashing. As the hash function we use the division method with linear probe. */ static inline int add_one (hurd_ihash_t ht, hurd_ihash_key_t key, hurd_ihash_value_t value) { unsigned int idx; idx = find_index (ht, key); /* Remove the old entry for this key if necessary. */ if (index_valid (ht, idx, key)) locp_remove (ht, &ht->items[idx].value); if (index_empty (ht, idx)) { ht->nr_items++; if (ht->items[idx].value == _HURD_IHASH_EMPTY) { assert (ht->nr_free > 0); ht->nr_free--; } ht->items[idx].value = value; ht->items[idx].key = key; if (ht->locp_offset != HURD_IHASH_NO_LOCP) *((hurd_ihash_locp_t *) (((char *) value) + ht->locp_offset)) = &ht->items[idx].value; return 1; } return 0; } /* Add VALUE to the hash table HT under the key KEY at LOCP. If there already is an item under this key, call the cleanup function (if any) for it before overriding the value. This function is faster than hurd_ihash_add. If LOCP is NULL, fall back to hurd_ihash_add. Otherwise, LOCP must be valid and may either be obtained from hurd_ihash_locp_find, or from an item that is currently in the hash table. If an item is replaced, KEY must match the key of the previous item. If a memory allocation error occurs, ENOMEM is returned, otherwise 0. */ error_t hurd_ihash_locp_add (hurd_ihash_t ht, hurd_ihash_locp_t locp, hurd_ihash_key_t key, hurd_ihash_value_t value) { struct _hurd_ihash_item *item = (struct _hurd_ihash_item *) locp; /* In case of complications, fall back to hurd_ihash_add. */ if (ht->size == 0 || item == NULL || (hurd_ihash_value_valid (item->value) && ! compare (ht, item->key, key)) || hurd_ihash_get_effective_load (ht) > ht->max_load) return hurd_ihash_add (ht, key, value); if (! hurd_ihash_value_valid (item->value)) { item->key = key; ht->nr_items += 1; if (item->value == _HURD_IHASH_EMPTY) { assert (ht->nr_free > 0); ht->nr_free -= 1; } } else { assert (compare (ht, item->key, key)); if (ht->cleanup) (*ht->cleanup) (locp, ht->cleanup_data); } item->value = value; if (ht->locp_offset != HURD_IHASH_NO_LOCP) *((hurd_ihash_locp_t *) (((char *) value) + ht->locp_offset)) = locp; return 0; } /* Add ITEM to the hash table HT under the key KEY. If there already is an item under this key, call the cleanup function (if any) for it before overriding the value. If a memory allocation error occurs, ENOMEM is returned, otherwise 0. */ error_t hurd_ihash_add (hurd_ihash_t ht, hurd_ihash_key_t key, hurd_ihash_value_t item) { struct hurd_ihash old_ht = *ht; int was_added; int fatal = 0; /* bail out on allocation errors */ unsigned int i; if (ht->size) { /* Only fill the hash table up to its maximum load factor. */ if (hurd_ihash_get_effective_load (ht) <= ht->max_load) add_one: if (add_one (ht, key, item)) return 0; } /* If the load exceeds the configured maximal load, then the hash table is too small, and we have to increase it. Otherwise we merely rehash the table to get rid of the tombstones. */ ht->nr_items = 0; if (ht->size == 0) ht->size = HURD_IHASH_MIN_SIZE; else if (hurd_ihash_get_load (&old_ht) > ht->max_load) ht->size <<= 1; ht->nr_free = ht->size; /* calloc() will initialize all values to _HURD_IHASH_EMPTY implicitly. */ ht->items = calloc (ht->size, sizeof (struct _hurd_ihash_item)); if (ht->items == NULL) { *ht = old_ht; if (fatal || ht->size == 0) return ENOMEM; /* We prefer performance degradation over failure. Therefore, we add the item even though we are above the load factor. If the table is full, this will fail. We set the fatal flag to avoid looping. */ fatal = 1; goto add_one; } /* We have to rehash the old entries. */ for (i = 0; i < old_ht.size; i++) if (!index_empty (&old_ht, i)) { was_added = add_one (ht, old_ht.items[i].key, old_ht.items[i].value); assert (was_added); } /* Finally add the new element! */ was_added = add_one (ht, key, item); assert (was_added); if (old_ht.size > 0) free (old_ht.items); return 0; } /* Find and return the item in the hash table HT with key KEY, or NULL if it doesn't exist. */ hurd_ihash_value_t hurd_ihash_find (hurd_ihash_t ht, hurd_ihash_key_t key) { if (ht->size == 0) return NULL; else { int idx = find_index (ht, key); return index_valid (ht, idx, key) ? ht->items[idx].value : NULL; } } /* Find and return the item in the hash table HT with key KEY, or NULL if it doesn't exist. If it is not found, this function may still return a location in SLOT. If the lookup is successful, the returned location can be used with hurd_ihash_locp_add to update the item, and with hurd_ihash_locp_remove to remove it. If the lookup is not successful, the returned location can be used with hurd_ihash_locp_add to add the item. Note that returned location is only valid until the next insertion or deletion. */ hurd_ihash_value_t hurd_ihash_locp_find (hurd_ihash_t ht, hurd_ihash_key_t key, hurd_ihash_locp_t *slot) { int idx; if (ht->size == 0) { *slot = NULL; return NULL; } idx = find_index (ht, key); *slot = &ht->items[idx].value; return index_valid (ht, idx, key) ? ht->items[idx].value : NULL; } /* Remove the entry with the key KEY from the hash table HT. If such an entry was found and removed, 1 is returned, otherwise 0. */ int hurd_ihash_remove (hurd_ihash_t ht, hurd_ihash_key_t key) { if (ht->size != 0) { int idx = find_index (ht, key); if (index_valid (ht, idx, key)) { locp_remove (ht, &ht->items[idx].value); return 1; } } return 0; } /* Remove the entry pointed to by the location pointer LOCP from the hashtable HT. LOCP is the location pointer of which the address was provided to hurd_ihash_add(). This call is faster than hurd_ihash_remove(). */ void hurd_ihash_locp_remove (hurd_ihash_t ht, hurd_ihash_locp_t locp) { locp_remove (ht, locp); }