summaryrefslogtreecommitdiff
path: root/scripts/spectrogram.lua
blob: 4f55a654a72bdbfb416b57b36d5aec41118d3016 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
ardour {
	["type"]    = "dsp",
	name        = "a-Inline Spectrogram",
	category    = "Visualization",
	license     = "MIT",
	author      = "Ardour Team",
	description = [[Mixer strip inline spectrum display]]
}

-- return possible i/o configurations
function dsp_ioconfig ()
	-- -1, -1 = any number of channels as long as input and output count matches
	return { [1] = { audio_in = -1, audio_out = -1}, }
end

function dsp_params ()
	return
	{
		{ ["type"] = "input", name = "Logscale", min = 0, max = 1, default = 0, toggled = true },
		{ ["type"] = "input", name = "1/f scale", min = 0, max = 1, default = 1, toggled = true },
		{ ["type"] = "input", name = "FFT Size", min = 0, max = 4, default = 3, enum = true, scalepoints =
			{
				["512"]  = 0,
				["1024"] = 1,
				["2048"] = 2,
				["4096"] = 3,
				["8192"] = 4,
			}
		},
		{ ["type"] = "input", name = "Height (Aspect)", min = 0, max = 3, default = 1, enum = true, scalepoints =
			{
				["Min"] = 0,
				["16:10"] = 1,
				["1:1"] = 2,
				["Max"] = 3
			}
		},
		{ ["type"] = "input", name = "Range", min = 20, max = 160, default = 60, unit="dB"},
		{ ["type"] = "input", name = "Offset", min = -40, max = 40, default = 0, unit="dB"},
	}
end

-- a C memory area.
-- It needs to be in global scope.
-- When the variable is set to nil, the allocated memory is free()ed.
-- the memory can be interpeted as float* for use in DSP, or read/write
-- to a C++ Ringbuffer instance.
-- http://manual.ardour.org/lua-scripting/class_reference/#ARDOUR:DSP:DspShm
local cmem = nil

function dsp_init (rate)
	-- global variables (DSP part only)
	dpy_hz = rate / 25
	dpy_wr = 0

	-- create a ringbuffer to hold (float) audio-data
	-- http://manual.ardour.org/lua-scripting/class_reference/#PBD:RingBufferF
	rb = PBD.RingBufferF (2 * rate)

	-- allocate memory, local mix buffer
	cmem = ARDOUR.DSP.DspShm (8192)

	-- create a table of objects to share with the GUI
	local tbl = {}
	tbl['rb'] = rb;
	tbl['samplerate'] = rate

	-- "self" is a special DSP variable referring
	-- to the plugin instance itself.
	--
	-- "table()" is-a http://manual.ardour.org/lua-scripting/class_reference/#ARDOUR.LuaTableRef
	-- which allows to store/retrieve lua-tables to share them other interpreters
	self:table ():set (tbl);
end

-- "dsp_runmap" uses Ardour's internal processor API, eqivalent to
-- 'connect_and_run()". There is no overhead (mapping, translating buffers).
-- The lua implementation is responsible to map all the buffers directly.
function dsp_runmap (bufs, in_map, out_map, n_samples, offset)
	-- here we sum all audio input channels channels and then copy the data to a ringbuffer
	-- for the GUI to process later

	local audio_ins = in_map:count (): n_audio () -- number of audio input buffers
	local ccnt = 0 -- processed channel count
	local mem = cmem:to_float(0) -- a "FloatArray", float* for direct C API usage from the previously allocated buffer
	for c = 1,audio_ins do
		-- see http://manual.ardour.org/lua-scripting/class_reference/#ARDOUR:ChanMapping
		-- Note: lua starts counting at 1, ardour's ChanMapping::get() at 0
		local ib = in_map:get (ARDOUR.DataType ("audio"), c - 1) -- get index of mapped input buffer
		local ob = out_map:get (ARDOUR.DataType ("audio"), c - 1) -- get index of mapped output buffer

		-- check if the input is connected to a buffer
		if (ib ~= ARDOUR.ChanMapping.Invalid) then

			-- http://manual.ardour.org/lua-scripting/class_reference/#ARDOUR:AudioBuffer
			-- http://manual.ardour.org/lua-scripting/class_reference/#ARDOUR:DSP
			if c == 1 then
				-- first channel, copy as-is
				ARDOUR.DSP.copy_vector (mem, bufs:get_audio (ib):data (offset), n_samples)
			else
				-- all other channels, add to existing data.
				ARDOUR.DSP.mix_buffers_no_gain (mem, bufs:get_audio (ib):data (offset), n_samples)
			end
			ccnt = ccnt + 1;

			-- copy data to output (if not processing in-place)
			if (ob ~= ARDOUR.ChanMapping.Invalid and ib ~= ob) then
				ARDOUR.DSP.copy_vector (bufs:get_audio (ob):data (offset), bufs:get_audio (ib):data (offset), n_samples)
			end
		end
	end

	-- Clear unconnected output buffers.
	-- In case we're processing in-place some buffers may be identical,
	-- so this must be done  *after processing*.
	for c = 1,audio_ins do
		local ib = in_map:get (ARDOUR.DataType ("audio"), c - 1)
		local ob = out_map:get (ARDOUR.DataType ("audio"), c - 1)
		if (ib == ARDOUR.ChanMapping.Invalid and ob ~= ARDOUR.ChanMapping.Invalid) then
			bufs:get_audio (ob):silence (n_samples, offset)
		end
	end

	-- Normalize gain (1 / channel-count)
	if ccnt > 1 then
		ARDOUR.DSP.apply_gain_to_buffer (mem, n_samples, 1 / ccnt)
	end

	-- if no channels were processed, feed silence.
	if ccnt == 0 then
		ARDOUR.DSP.memset (mem, 0, n_samples)
	end

	-- write data to the ringbuffer
	-- http://manual.ardour.org/lua-scripting/class_reference/#PBD:RingBufferF
	rb:write (mem, n_samples)

	-- emit QueueDraw every FPS
	-- TODO: call every FFT window-size worth of samples, at most every FPS
	dpy_wr = dpy_wr + n_samples
	if (dpy_wr > dpy_hz) then
		dpy_wr = dpy_wr % dpy_hz
		self:queue_draw ()
	end
end

----------------------------------------------------------------
-- GUI

local fft = nil
local read_ptr = 0
local line = 0
local img = nil
local fft_size = 0
local last_log = false

function render_inline (ctx, w, max_h)
	local ctrl = CtrlPorts:array () -- get control port array (read/write)
	local tbl = self:table ():get () -- get shared memory table
	local rate = tbl['samplerate']
	if not cmem then
		cmem = ARDOUR.DSP.DspShm (0)
	end

	-- get settings
	local logscale = ctrl[1] or 0; logscale = logscale > 0 -- x-axis logscale
	local pink = ctrl[2] or 0; pink = pink > 0 -- 1/f scale
	local fftsizeenum = ctrl[3] or 3 -- fft-size enum
	local hmode = ctrl[4] or 1 -- height mode enum
	local dbrange = ctrl[5] or 60
	local gaindb = ctrl[6] or 0

	local fftsize
	if fftsizeenum == 0 then fftsize = 512
	elseif fftsizeenum == 1 then fftsize = 1024
	elseif fftsizeenum == 2 then fftsize = 2048
	elseif fftsizeenum == 4 then fftsize = 8192
	else fftsize = 4096
	end

	if fftsize ~= fft_size then
		fft_size = fftsize
		fft = nil
	end

	if dbrange < 20 then dbrange = 20; end
	if dbrange > 160 then dbrange = 160; end
	if gaindb < -40 then dbrange = -40; end
	if gaindb >  40 then dbrange =  40; end


	if not fft then
		fft = ARDOUR.DSP.FFTSpectrum (fft_size, rate)
		cmem:allocate (fft_size)
	end

	if last_log ~= logscale then
		last_log = logscale
		img = nil
		line = 0
	end

	-- calc height
	if hmode == 0 then
		h = math.ceil (w * 10 / 16)
		if (h > 44) then
			h = 44
		end
	elseif (hmode == 2) then
		h = w
	elseif (hmode == 3) then
		h = max_h
	else
		h = math.ceil (w * 10 / 16)
	end
	if (h > max_h) then
		h = max_h
	end

	-- re-create image surface
	if not img or img:get_width() ~= w or img:get_height () ~= h then
		img = Cairo.ImageSurface (Cairo.Format.ARGB32, w, h)
		line = 0
	end
	local ictx = img:context ()

	local bins = fft_size / 2 - 1 -- fft bin count
	local bpx = bins / w  -- bins per x-pixel (linear)
	local fpb = rate / fft_size -- freq-step per bin
	local f_e = rate / 2 / fpb -- log-scale exponent
	local f_b = w / math.log (fft_size / 2) -- inverse log-scale base
	local f_l = math.log (fft_size / rate) * f_b -- inverse logscale lower-bound

	local rb = tbl['rb'];
	local mem = cmem:to_float (0)

	while (rb:read_space() >= fft_size) do
		-- process one line / buffer
		rb:read (mem, fft_size)
		fft:set_data_hann (mem, fft_size, 0)
		fft:execute ()

		-- draw spectrum
		assert (bpx >= 1)

		-- scroll
		if line == 0 then line = h - 1; else line = line - 1; end

		-- clear this line
		ictx:set_source_rgba (0, 0, 0, 1)
		ictx:rectangle (0, line, w, 1)
		ictx:fill ()

		for x = 0, w - 1 do
			local pk = 0
			local b0, b1
			if logscale then
				-- 20 .. 20k
				b0 = math.floor (f_e ^ (x / w))
				b1 = math.floor (f_e ^ ((x + 1) / w))
			else
				b0 = math.floor (x * bpx)
				b1 = math.floor ((x + 1) * bpx)
			end

			if b1 >= b0 and b1 <= bins and b0 >= 0 then
				for i = b0, b1 do
					local level = gaindb + fft:power_at_bin (i, pink and i or 1) -- pink ? i : 1
					if level > -dbrange then
						local p = (dbrange + level) / dbrange
						if p > pk then pk = p; end
					end
				end
			end
			if pk > 0.0 then
				if pk > 1.0 then pk = 1.0; end
				ictx:set_source_rgba (ARDOUR.LuaAPI.hsla_to_rgba (.70 - .72 * pk, .9, .3 + pk * .4));
				ictx:rectangle (x, line, 1, 1)
				ictx:fill ()
			end
		end
	end

	-- copy image surface
	if line == 0 then
		img:set_as_source (ctx, 0, 0)
		ctx:rectangle (0, 0, w, h)
		ctx:fill ()
	else
		local yp = h - line - 1;
		img:set_as_source (ctx, 0, yp)
		ctx:rectangle (0, yp, w, line)
		ctx:fill ()

		img:set_as_source (ctx, 0, -line)
		ctx:rectangle (0, 0, w, yp)
		ctx:fill ()
	end


	-- draw grid on top
	function x_at_freq (f)
		if logscale then
			return f_l + f_b * math.log (f)
		else
			return 2 * w * f / rate;
		end
	end

	function grid_freq (f)
		-- draw vertical grid line
		local x = .5 + math.floor (x_at_freq (f))
		ctx:move_to (x, 0)
		ctx:line_to (x, h)
		ctx:stroke ()
	end

	-- draw grid on top
	local dash3 = C.DoubleVector ()
	dash3:add ({1, 3})
	ctx:set_line_width (1.0)
	ctx:set_dash (dash3, 2) -- dotted line
	ctx:set_source_rgba (.5, .5, .5, .8)
	grid_freq (100)
	grid_freq (1000)
	grid_freq (10000)
	ctx:unset_dash ()

	return {w, h}
end