summaryrefslogtreecommitdiff
path: root/libs/qm-dsp/dsp/transforms/FFT.cpp
blob: 454cfb1422ec6660b195c0f83c2e14e28cbc0de4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*-  vi:set ts=8 sts=4 sw=4: */

/*
    QM DSP Library

    Centre for Digital Music, Queen Mary, University of London.
    This file is based on Don Cross's public domain FFT implementation.
*/

#include "FFT.h"

#include "maths/MathUtilities.h"

#include <cmath>

#include <iostream>

FFT::FFT(unsigned int n) :
    m_n(n),
    m_private(0)
{
    if( !MathUtilities::isPowerOfTwo(m_n) )
    {
        std::cerr << "ERROR: FFT: Non-power-of-two FFT size "
                  << m_n << " not supported in this implementation"
                  << std::endl;
	return;
    }
}

FFT::~FFT()
{

}

FFTReal::FFTReal(unsigned int n) :
    m_n(n),
    m_private_real(0)
{
    m_private_real = new FFT(m_n);
}

FFTReal::~FFTReal()
{
    delete (FFT *)m_private_real;
}

void
FFTReal::process(bool inverse,
                 const double *realIn,
                 double *realOut, double *imagOut)
{
    ((FFT *)m_private_real)->process(inverse, realIn, 0, realOut, imagOut);
}

static unsigned int numberOfBitsNeeded(unsigned int p_nSamples)
{	
    int i;

    if( p_nSamples < 2 )
    {
	return 0;
    }

    for ( i=0; ; i++ )
    {
	if( p_nSamples & (1 << i) ) return i;
    }
}

static unsigned int reverseBits(unsigned int p_nIndex, unsigned int p_nBits)
{
    unsigned int i, rev;

    for(i=rev=0; i < p_nBits; i++)
    {
	rev = (rev << 1) | (p_nIndex & 1);
	p_nIndex >>= 1;
    }

    return rev;
}

void
FFT::process(bool p_bInverseTransform,
             const double *p_lpRealIn, const double *p_lpImagIn,
             double *p_lpRealOut, double *p_lpImagOut)
{
    if (!p_lpRealIn || !p_lpRealOut || !p_lpImagOut) return;

//    std::cerr << "FFT::process(" << m_n << "," << p_bInverseTransform << ")" << std::endl;

    unsigned int NumBits;
    unsigned int i, j, k, n;
    unsigned int BlockSize, BlockEnd;

    double angle_numerator = 2.0 * M_PI;
    double tr, ti;

    if( !MathUtilities::isPowerOfTwo(m_n) )
    {
        std::cerr << "ERROR: FFT::process: Non-power-of-two FFT size "
                  << m_n << " not supported in this implementation"
                  << std::endl;
	return;
    }

    if( p_bInverseTransform ) angle_numerator = -angle_numerator;

    NumBits = numberOfBitsNeeded ( m_n );


    for( i=0; i < m_n; i++ )
    {
	j = reverseBits ( i, NumBits );
	p_lpRealOut[j] = p_lpRealIn[i];
	p_lpImagOut[j] = (p_lpImagIn == 0) ? 0.0 : p_lpImagIn[i];
    }


    BlockEnd = 1;
    for( BlockSize = 2; BlockSize <= m_n; BlockSize <<= 1 )
    {
	double delta_angle = angle_numerator / (double)BlockSize;
	double sm2 = -sin ( -2 * delta_angle );
	double sm1 = -sin ( -delta_angle );
	double cm2 = cos ( -2 * delta_angle );
	double cm1 = cos ( -delta_angle );
	double w = 2 * cm1;
	double ar[3], ai[3];

	for( i=0; i < m_n; i += BlockSize )
	{

	    ar[2] = cm2;
	    ar[1] = cm1;

	    ai[2] = sm2;
	    ai[1] = sm1;

	    for ( j=i, n=0; n < BlockEnd; j++, n++ )
	    {

		ar[0] = w*ar[1] - ar[2];
		ar[2] = ar[1];
		ar[1] = ar[0];

		ai[0] = w*ai[1] - ai[2];
		ai[2] = ai[1];
		ai[1] = ai[0];

		k = j + BlockEnd;
		tr = ar[0]*p_lpRealOut[k] - ai[0]*p_lpImagOut[k];
		ti = ar[0]*p_lpImagOut[k] + ai[0]*p_lpRealOut[k];

		p_lpRealOut[k] = p_lpRealOut[j] - tr;
		p_lpImagOut[k] = p_lpImagOut[j] - ti;

		p_lpRealOut[j] += tr;
		p_lpImagOut[j] += ti;

	    }
	}

	BlockEnd = BlockSize;

    }


    if( p_bInverseTransform )
    {
	double denom = (double)m_n;

	for ( i=0; i < m_n; i++ )
	{
	    p_lpRealOut[i] /= denom;
	    p_lpImagOut[i] /= denom;
	}
    }
}