summaryrefslogtreecommitdiff
path: root/libs/pbd/cartesian.cc
blob: def1786c3ee89e91e8fdbf5ee8e49345642656e4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
/*
    Copyright (C) 2010 Paul Davis

    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program; if not, write to the Free Software
    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/

#include <math.h>

#include "pbd/cartesian.h"

using namespace std;

void
PBD::spherical_to_cartesian (double azi, double ele, double len, double& x, double& y, double& z)
{
	/* convert from cylindrical coordinates in degrees to cartesian */

	static const double atorad = 2.0 * M_PI / 360.0 ;
        
        if (len == 0.0) {
                len = 1.0;
        }

	x = len * cos (azi * atorad) * cos (ele * atorad);
	y = len * sin (azi * atorad) * cos (ele * atorad);
	z = len * sin (ele * atorad);
}

void 
PBD::cartesian_to_spherical (double x, double y, double z, double& azimuth, double& elevation, double& length)
{
#if 1
	/* converts cartesian coordinates to cylindrical in degrees*/

        double rho, theta, phi;

        rho = sqrt (x*x + y*y + z*z);
        phi = acos (1.0/rho);
        theta = atan2 (y, x);

        /* XXX for now, clamp phi to zero */

        phi = 0.0;

        if (theta < 0.0) {
                azimuth = 180.0 - (180.0 * (theta / M_PI)); /* LHS is negative */
        } else {
                azimuth = 180.0 * (theta / M_PI);
        }

        if (phi < 0.0) {
                elevation = 180.0 - (180.0 * (phi / M_PI)); /* LHS is negative */
        } else {
                elevation = 180.0 * (phi /  M_PI);
        }
        
        length = rho;
#else
	/* converts cartesian coordinates to cylindrical in degrees*/

	const double atorad = 2.0 * M_PI / 360.0;
	double atan_y_per_x, atan_x_pl_y_per_z;
	double distance;

	if (x == 0.0) {
		atan_y_per_x = M_PI / 2;
	} else {
		atan_y_per_x = atan2 (y,x);
	}

	if (y < 0.0) {
		/* below x-axis: atan2 returns 0 .. -PI (negative) so convert to degrees and ADD to 180 */
		azimuth = 180.0 + (atan_y_per_x / (M_PI/180.0) + 180.0);
	} else {
		/* above x-axis: atan2 returns 0 .. +PI so convert to degrees */
		azimuth = atan_y_per_x / atorad;
	}

	distance = sqrt (x*x + y*y);

	if (z == 0.0) {
		atan_x_pl_y_per_z = 0.0;
	} else {
		atan_x_pl_y_per_z = atan2 (z,distance);
	}

	if (distance == 0.0) {
		if (z < 0.0) {
			atan_x_pl_y_per_z = -M_PI/2.0;
		} else if (z > 0.0) {
			atan_x_pl_y_per_z = M_PI/2.0;
		}
	}

	elevation = atan_x_pl_y_per_z / atorad;

	// distance = sqrtf (x*x + y*y + z*z);
#endif
}