summaryrefslogtreecommitdiff
path: root/libs/fluidsynth/src/fluid_rvoice_dsp.c
blob: df7da5022decf971561d094785c6ad12f8b1ea58 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
/* FluidSynth - A Software Synthesizer
 *
 * Copyright (C) 2003  Peter Hanappe and others.
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Library General Public License
 * as published by the Free Software Foundation; either version 2 of
 * the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Library General Public License for more details.
 *
 * You should have received a copy of the GNU Library General Public
 * License along with this library; if not, write to the Free
 * Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
 * 02110-1301, USA
 */

#include "fluidsynth_priv.h"
#include "fluid_phase.h"
#include "fluid_rvoice.h"
#include "fluid_sys.h"

/* Purpose:
 *
 * Interpolates audio data (obtains values between the samples of the original
 * waveform data).
 *
 * Variables loaded from the voice structure (assigned in fluid_voice_write()):
 * - dsp_data: Pointer to the original waveform data
 * - dsp_phase: The position in the original waveform data.
 *              This has an integer and a fractional part (between samples).
 * - dsp_phase_incr: For each output sample, the position in the original
 *              waveform advances by dsp_phase_incr. This also has an integer
 *              part and a fractional part.
 *              If a sample is played at root pitch (no pitch change),
 *              dsp_phase_incr is integer=1 and fractional=0.
 * - dsp_amp: The current amplitude envelope value.
 * - dsp_amp_incr: The changing rate of the amplitude envelope.
 *
 * A couple of variables are used internally, their results are discarded:
 * - dsp_i: Index through the output buffer
 * - dsp_buf: Output buffer of floating point values (FLUID_BUFSIZE in length)
 */

/* Interpolation (find a value between two samples of the original waveform) */

/* Linear interpolation table (2 coefficients centered on 1st) */
static fluid_real_t interp_coeff_linear[FLUID_INTERP_MAX][2];

/* 4th order (cubic) interpolation table (4 coefficients centered on 2nd) */
static fluid_real_t interp_coeff[FLUID_INTERP_MAX][4];

/* 7th order interpolation (7 coefficients centered on 3rd) */
static fluid_real_t sinc_table7[FLUID_INTERP_MAX][7];


#define SINC_INTERP_ORDER 7	/* 7th order constant */


/* Initializes interpolation tables */
void fluid_rvoice_dsp_config (void)
{
  int i, i2;
  double x, v;
  double i_shifted;

  /* Initialize the coefficients for the interpolation. The math comes
   * from a mail, posted by Olli Niemitalo to the music-dsp mailing
   * list (I found it in the music-dsp archives
   * http://www.smartelectronix.com/musicdsp/).  */

  for (i = 0; i < FLUID_INTERP_MAX; i++)
  {
    x = (double) i / (double) FLUID_INTERP_MAX;

    interp_coeff[i][0] = (fluid_real_t)(x * (-0.5 + x * (1 - 0.5 * x)));
    interp_coeff[i][1] = (fluid_real_t)(1.0 + x * x * (1.5 * x - 2.5));
    interp_coeff[i][2] = (fluid_real_t)(x * (0.5 + x * (2.0 - 1.5 * x)));
    interp_coeff[i][3] = (fluid_real_t)(0.5 * x * x * (x - 1.0));

    interp_coeff_linear[i][0] = (fluid_real_t)(1.0 - x);
    interp_coeff_linear[i][1] = (fluid_real_t)x;
  }

  /* i: Offset in terms of whole samples */
  for (i = 0; i < SINC_INTERP_ORDER; i++)
  { /* i2: Offset in terms of fractional samples ('subsamples') */
    for (i2 = 0; i2 < FLUID_INTERP_MAX; i2++)
    {
      /* center on middle of table */
      i_shifted = (double)i - ((double)SINC_INTERP_ORDER / 2.0)
	+ (double)i2 / (double)FLUID_INTERP_MAX;

      /* sinc(0) cannot be calculated straightforward (limit needed for 0/0) */
      if (fabs (i_shifted) > 0.000001)
      {
	v = (fluid_real_t)sin (i_shifted * M_PI) / (M_PI * i_shifted);
	/* Hamming window */
	v *= (fluid_real_t)0.5 * (1.0 + cos (2.0 * M_PI * i_shifted / (fluid_real_t)SINC_INTERP_ORDER));
      }
      else v = 1.0;

      sinc_table7[FLUID_INTERP_MAX - i2 - 1][i] = v;
    }
  }

#if 0
  for (i = 0; i < FLUID_INTERP_MAX; i++)
  {
    printf ("%d %0.3f %0.3f %0.3f %0.3f %0.3f %0.3f %0.3f\n",
	    i, sinc_table7[0][i], sinc_table7[1][i], sinc_table7[2][i],
	    sinc_table7[3][i], sinc_table7[4][i], sinc_table7[5][i], sinc_table7[6][i]);
  }
#endif

  fluid_check_fpe("interpolation table calculation");
}

/* No interpolation. Just take the sample, which is closest to
  * the playback pointer.  Questionable quality, but very
  * efficient. */
int
fluid_rvoice_dsp_interpolate_none (fluid_rvoice_dsp_t *voice)
{
  fluid_phase_t dsp_phase = voice->phase;
  fluid_phase_t dsp_phase_incr;
  short int *dsp_data = voice->sample->data;
  fluid_real_t *dsp_buf = voice->dsp_buf;
  fluid_real_t dsp_amp = voice->amp;
  fluid_real_t dsp_amp_incr = voice->amp_incr;
  unsigned int dsp_i = 0;
  unsigned int dsp_phase_index;
  unsigned int end_index;
  int looping;

  /* Convert playback "speed" floating point value to phase index/fract */
  fluid_phase_set_float (dsp_phase_incr, voice->phase_incr);

  /* voice is currently looping? */
  looping = voice->is_looping;
 
  end_index = looping ? voice->loopend - 1 : voice->end;

  while (1)
  {
    dsp_phase_index = fluid_phase_index_round (dsp_phase);	/* round to nearest point */

    /* interpolate sequence of sample points */
    for ( ; dsp_i < FLUID_BUFSIZE && dsp_phase_index <= end_index; dsp_i++)
    {
      dsp_buf[dsp_i] = dsp_amp * dsp_data[dsp_phase_index];

      /* increment phase and amplitude */
      fluid_phase_incr (dsp_phase, dsp_phase_incr);
      dsp_phase_index = fluid_phase_index_round (dsp_phase);	/* round to nearest point */
      dsp_amp += dsp_amp_incr;
    }

    /* break out if not looping (buffer may not be full) */
    if (!looping) break;

    /* go back to loop start */
    if (dsp_phase_index > end_index)
    {
      fluid_phase_sub_int (dsp_phase, voice->loopend - voice->loopstart);
      voice->has_looped = 1;
    }

    /* break out if filled buffer */
    if (dsp_i >= FLUID_BUFSIZE) break;
  }

  voice->phase = dsp_phase;
  voice->amp = dsp_amp;

  return (dsp_i);
}

/* Straight line interpolation.
 * Returns number of samples processed (usually FLUID_BUFSIZE but could be
 * smaller if end of sample occurs).
 */
int
fluid_rvoice_dsp_interpolate_linear (fluid_rvoice_dsp_t *voice)
{
  fluid_phase_t dsp_phase = voice->phase;
  fluid_phase_t dsp_phase_incr;
  short int *dsp_data = voice->sample->data;
  fluid_real_t *dsp_buf = voice->dsp_buf;
  fluid_real_t dsp_amp = voice->amp;
  fluid_real_t dsp_amp_incr = voice->amp_incr;
  unsigned int dsp_i = 0;
  unsigned int dsp_phase_index;
  unsigned int end_index;
  short int point;
  fluid_real_t *coeffs;
  int looping;

  /* Convert playback "speed" floating point value to phase index/fract */
  fluid_phase_set_float (dsp_phase_incr, voice->phase_incr);

  /* voice is currently looping? */
  looping = voice->is_looping;

  /* last index before 2nd interpolation point must be specially handled */
  end_index = (looping ? voice->loopend - 1 : voice->end) - 1;

  /* 2nd interpolation point to use at end of loop or sample */
  if (looping) point = dsp_data[voice->loopstart];	/* loop start */
  else point = dsp_data[voice->end];			/* duplicate end for samples no longer looping */

  while (1)
  {
    dsp_phase_index = fluid_phase_index (dsp_phase);

    /* interpolate the sequence of sample points */
    for ( ; dsp_i < FLUID_BUFSIZE && dsp_phase_index <= end_index; dsp_i++)
    {
      coeffs = interp_coeff_linear[fluid_phase_fract_to_tablerow (dsp_phase)];
      dsp_buf[dsp_i] = dsp_amp * (coeffs[0] * dsp_data[dsp_phase_index]
				  + coeffs[1] * dsp_data[dsp_phase_index+1]);

      /* increment phase and amplitude */
      fluid_phase_incr (dsp_phase, dsp_phase_incr);
      dsp_phase_index = fluid_phase_index (dsp_phase);
      dsp_amp += dsp_amp_incr;
    }

    /* break out if buffer filled */
    if (dsp_i >= FLUID_BUFSIZE) break;

    end_index++;	/* we're now interpolating the last point */

    /* interpolate within last point */
    for (; dsp_phase_index <= end_index && dsp_i < FLUID_BUFSIZE; dsp_i++)
    {
      coeffs = interp_coeff_linear[fluid_phase_fract_to_tablerow (dsp_phase)];
      dsp_buf[dsp_i] = dsp_amp * (coeffs[0] * dsp_data[dsp_phase_index]
				  + coeffs[1] * point);

      /* increment phase and amplitude */
      fluid_phase_incr (dsp_phase, dsp_phase_incr);
      dsp_phase_index = fluid_phase_index (dsp_phase);
      dsp_amp += dsp_amp_incr;	/* increment amplitude */
    }

    if (!looping) break;	/* break out if not looping (end of sample) */

    /* go back to loop start (if past */
    if (dsp_phase_index > end_index)
    {
      fluid_phase_sub_int (dsp_phase, voice->loopend - voice->loopstart);
      voice->has_looped = 1;
    }

    /* break out if filled buffer */
    if (dsp_i >= FLUID_BUFSIZE) break;

    end_index--;	/* set end back to second to last sample point */
  }

  voice->phase = dsp_phase;
  voice->amp = dsp_amp;

  return (dsp_i);
}

/* 4th order (cubic) interpolation.
 * Returns number of samples processed (usually FLUID_BUFSIZE but could be
 * smaller if end of sample occurs).
 */
int
fluid_rvoice_dsp_interpolate_4th_order (fluid_rvoice_dsp_t *voice)
{
  fluid_phase_t dsp_phase = voice->phase;
  fluid_phase_t dsp_phase_incr;
  short int *dsp_data = voice->sample->data;
  fluid_real_t *dsp_buf = voice->dsp_buf;
  fluid_real_t dsp_amp = voice->amp;
  fluid_real_t dsp_amp_incr = voice->amp_incr;
  unsigned int dsp_i = 0;
  unsigned int dsp_phase_index;
  unsigned int start_index, end_index;
  short int start_point, end_point1, end_point2;
  fluid_real_t *coeffs;
  int looping;

  /* Convert playback "speed" floating point value to phase index/fract */
  fluid_phase_set_float (dsp_phase_incr, voice->phase_incr);

  /* voice is currently looping? */
  looping = voice->is_looping;

  /* last index before 4th interpolation point must be specially handled */
  end_index = (looping ? voice->loopend - 1 : voice->end) - 2;

  if (voice->has_looped)	/* set start_index and start point if looped or not */
  {
    start_index = voice->loopstart;
    start_point = dsp_data[voice->loopend - 1];	/* last point in loop (wrap around) */
  }
  else
  {
    start_index = voice->start;
    start_point = dsp_data[voice->start];	/* just duplicate the point */
  }

  /* get points off the end (loop start if looping, duplicate point if end) */
  if (looping)
  {
    end_point1 = dsp_data[voice->loopstart];
    end_point2 = dsp_data[voice->loopstart + 1];
  }
  else
  {
    end_point1 = dsp_data[voice->end];
    end_point2 = end_point1;
  }

  while (1)
  {
    dsp_phase_index = fluid_phase_index (dsp_phase);

    /* interpolate first sample point (start or loop start) if needed */
    for ( ; dsp_phase_index == start_index && dsp_i < FLUID_BUFSIZE; dsp_i++)
    {
      coeffs = interp_coeff[fluid_phase_fract_to_tablerow (dsp_phase)];
      dsp_buf[dsp_i] = dsp_amp * (coeffs[0] * start_point
				  + coeffs[1] * dsp_data[dsp_phase_index]
				  + coeffs[2] * dsp_data[dsp_phase_index+1]
				  + coeffs[3] * dsp_data[dsp_phase_index+2]);

      /* increment phase and amplitude */
      fluid_phase_incr (dsp_phase, dsp_phase_incr);
      dsp_phase_index = fluid_phase_index (dsp_phase);
      dsp_amp += dsp_amp_incr;
    }

    /* interpolate the sequence of sample points */
    for ( ; dsp_i < FLUID_BUFSIZE && dsp_phase_index <= end_index; dsp_i++)
    {
      coeffs = interp_coeff[fluid_phase_fract_to_tablerow (dsp_phase)];
      dsp_buf[dsp_i] = dsp_amp * (coeffs[0] * dsp_data[dsp_phase_index-1]
				  + coeffs[1] * dsp_data[dsp_phase_index]
				  + coeffs[2] * dsp_data[dsp_phase_index+1]
				  + coeffs[3] * dsp_data[dsp_phase_index+2]);

      /* increment phase and amplitude */
      fluid_phase_incr (dsp_phase, dsp_phase_incr);
      dsp_phase_index = fluid_phase_index (dsp_phase);
      dsp_amp += dsp_amp_incr;
    }

    /* break out if buffer filled */
    if (dsp_i >= FLUID_BUFSIZE) break;

    end_index++;	/* we're now interpolating the 2nd to last point */

    /* interpolate within 2nd to last point */
    for (; dsp_phase_index <= end_index && dsp_i < FLUID_BUFSIZE; dsp_i++)
    {
      coeffs = interp_coeff[fluid_phase_fract_to_tablerow (dsp_phase)];
      dsp_buf[dsp_i] = dsp_amp * (coeffs[0] * dsp_data[dsp_phase_index-1]
				  + coeffs[1] * dsp_data[dsp_phase_index]
				  + coeffs[2] * dsp_data[dsp_phase_index+1]
				  + coeffs[3] * end_point1);

      /* increment phase and amplitude */
      fluid_phase_incr (dsp_phase, dsp_phase_incr);
      dsp_phase_index = fluid_phase_index (dsp_phase);
      dsp_amp += dsp_amp_incr;
    }

    end_index++;	/* we're now interpolating the last point */

    /* interpolate within the last point */
    for (; dsp_phase_index <= end_index && dsp_i < FLUID_BUFSIZE; dsp_i++)
    {
      coeffs = interp_coeff[fluid_phase_fract_to_tablerow (dsp_phase)];
      dsp_buf[dsp_i] = dsp_amp * (coeffs[0] * dsp_data[dsp_phase_index-1]
				  + coeffs[1] * dsp_data[dsp_phase_index]
				  + coeffs[2] * end_point1
				  + coeffs[3] * end_point2);

      /* increment phase and amplitude */
      fluid_phase_incr (dsp_phase, dsp_phase_incr);
      dsp_phase_index = fluid_phase_index (dsp_phase);
      dsp_amp += dsp_amp_incr;
    }

    if (!looping) break;	/* break out if not looping (end of sample) */

    /* go back to loop start */
    if (dsp_phase_index > end_index)
    {
      fluid_phase_sub_int (dsp_phase, voice->loopend - voice->loopstart);

      if (!voice->has_looped)
      {
	voice->has_looped = 1;
	start_index = voice->loopstart;
	start_point = dsp_data[voice->loopend - 1];
      }
    }

    /* break out if filled buffer */
    if (dsp_i >= FLUID_BUFSIZE) break;

    end_index -= 2;	/* set end back to third to last sample point */
  }

  voice->phase = dsp_phase;
  voice->amp = dsp_amp;

  return (dsp_i);
}

/* 7th order interpolation.
 * Returns number of samples processed (usually FLUID_BUFSIZE but could be
 * smaller if end of sample occurs).
 */
int
fluid_rvoice_dsp_interpolate_7th_order (fluid_rvoice_dsp_t *voice)
{
  fluid_phase_t dsp_phase = voice->phase;
  fluid_phase_t dsp_phase_incr;
  short int *dsp_data = voice->sample->data;
  fluid_real_t *dsp_buf = voice->dsp_buf;
  fluid_real_t dsp_amp = voice->amp;
  fluid_real_t dsp_amp_incr = voice->amp_incr;
  unsigned int dsp_i = 0;
  unsigned int dsp_phase_index;
  unsigned int start_index, end_index;
  short int start_points[3];
  short int end_points[3];
  fluid_real_t *coeffs;
  int looping;

  /* Convert playback "speed" floating point value to phase index/fract */
  fluid_phase_set_float (dsp_phase_incr, voice->phase_incr);

  /* add 1/2 sample to dsp_phase since 7th order interpolation is centered on
   * the 4th sample point */
  fluid_phase_incr (dsp_phase, (fluid_phase_t)0x80000000);

  /* voice is currently looping? */
  looping = voice->is_looping;

  /* last index before 7th interpolation point must be specially handled */
  end_index = (looping ? voice->loopend - 1 : voice->end) - 3;

  if (voice->has_looped)	/* set start_index and start point if looped or not */
  {
    start_index = voice->loopstart;
    start_points[0] = dsp_data[voice->loopend - 1];
    start_points[1] = dsp_data[voice->loopend - 2];
    start_points[2] = dsp_data[voice->loopend - 3];
  }
  else
  {
    start_index = voice->start;
    start_points[0] = dsp_data[voice->start];	/* just duplicate the start point */
    start_points[1] = start_points[0];
    start_points[2] = start_points[0];
  }

  /* get the 3 points off the end (loop start if looping, duplicate point if end) */
  if (looping)
  {
    end_points[0] = dsp_data[voice->loopstart];
    end_points[1] = dsp_data[voice->loopstart + 1];
    end_points[2] = dsp_data[voice->loopstart + 2];
  }
  else
  {
    end_points[0] = dsp_data[voice->end];
    end_points[1] = end_points[0];
    end_points[2] = end_points[0];
  }

  while (1)
  {
    dsp_phase_index = fluid_phase_index (dsp_phase);

    /* interpolate first sample point (start or loop start) if needed */
    for ( ; dsp_phase_index == start_index && dsp_i < FLUID_BUFSIZE; dsp_i++)
    {
      coeffs = sinc_table7[fluid_phase_fract_to_tablerow (dsp_phase)];

      dsp_buf[dsp_i] = dsp_amp
	* (coeffs[0] * (fluid_real_t)start_points[2]
	   + coeffs[1] * (fluid_real_t)start_points[1]
	   + coeffs[2] * (fluid_real_t)start_points[0]
	   + coeffs[3] * (fluid_real_t)dsp_data[dsp_phase_index]
	   + coeffs[4] * (fluid_real_t)dsp_data[dsp_phase_index+1]
	   + coeffs[5] * (fluid_real_t)dsp_data[dsp_phase_index+2]
	   + coeffs[6] * (fluid_real_t)dsp_data[dsp_phase_index+3]);

      /* increment phase and amplitude */
      fluid_phase_incr (dsp_phase, dsp_phase_incr);
      dsp_phase_index = fluid_phase_index (dsp_phase);
      dsp_amp += dsp_amp_incr;
    }

    start_index++;

    /* interpolate 2nd to first sample point (start or loop start) if needed */
    for ( ; dsp_phase_index == start_index && dsp_i < FLUID_BUFSIZE; dsp_i++)
    {
      coeffs = sinc_table7[fluid_phase_fract_to_tablerow (dsp_phase)];

      dsp_buf[dsp_i] = dsp_amp
	* (coeffs[0] * (fluid_real_t)start_points[1]
	   + coeffs[1] * (fluid_real_t)start_points[0]
	   + coeffs[2] * (fluid_real_t)dsp_data[dsp_phase_index-1]
	   + coeffs[3] * (fluid_real_t)dsp_data[dsp_phase_index]
	   + coeffs[4] * (fluid_real_t)dsp_data[dsp_phase_index+1]
	   + coeffs[5] * (fluid_real_t)dsp_data[dsp_phase_index+2]
	   + coeffs[6] * (fluid_real_t)dsp_data[dsp_phase_index+3]);

      /* increment phase and amplitude */
      fluid_phase_incr (dsp_phase, dsp_phase_incr);
      dsp_phase_index = fluid_phase_index (dsp_phase);
      dsp_amp += dsp_amp_incr;
    }

    start_index++;

    /* interpolate 3rd to first sample point (start or loop start) if needed */
    for ( ; dsp_phase_index == start_index && dsp_i < FLUID_BUFSIZE; dsp_i++)
    {
      coeffs = sinc_table7[fluid_phase_fract_to_tablerow (dsp_phase)];

      dsp_buf[dsp_i] = dsp_amp
	* (coeffs[0] * (fluid_real_t)start_points[0]
	   + coeffs[1] * (fluid_real_t)dsp_data[dsp_phase_index-2]
	   + coeffs[2] * (fluid_real_t)dsp_data[dsp_phase_index-1]
	   + coeffs[3] * (fluid_real_t)dsp_data[dsp_phase_index]
	   + coeffs[4] * (fluid_real_t)dsp_data[dsp_phase_index+1]
	   + coeffs[5] * (fluid_real_t)dsp_data[dsp_phase_index+2]
	   + coeffs[6] * (fluid_real_t)dsp_data[dsp_phase_index+3]);

      /* increment phase and amplitude */
      fluid_phase_incr (dsp_phase, dsp_phase_incr);
      dsp_phase_index = fluid_phase_index (dsp_phase);
      dsp_amp += dsp_amp_incr;
    }

    start_index -= 2;	/* set back to original start index */


    /* interpolate the sequence of sample points */
    for ( ; dsp_i < FLUID_BUFSIZE && dsp_phase_index <= end_index; dsp_i++)
    {
      coeffs = sinc_table7[fluid_phase_fract_to_tablerow (dsp_phase)];

      dsp_buf[dsp_i] = dsp_amp
	* (coeffs[0] * (fluid_real_t)dsp_data[dsp_phase_index-3]
	   + coeffs[1] * (fluid_real_t)dsp_data[dsp_phase_index-2]
	   + coeffs[2] * (fluid_real_t)dsp_data[dsp_phase_index-1]
	   + coeffs[3] * (fluid_real_t)dsp_data[dsp_phase_index]
	   + coeffs[4] * (fluid_real_t)dsp_data[dsp_phase_index+1]
	   + coeffs[5] * (fluid_real_t)dsp_data[dsp_phase_index+2]
	   + coeffs[6] * (fluid_real_t)dsp_data[dsp_phase_index+3]);

      /* increment phase and amplitude */
      fluid_phase_incr (dsp_phase, dsp_phase_incr);
      dsp_phase_index = fluid_phase_index (dsp_phase);
      dsp_amp += dsp_amp_incr;
    }

    /* break out if buffer filled */
    if (dsp_i >= FLUID_BUFSIZE) break;

    end_index++;	/* we're now interpolating the 3rd to last point */

    /* interpolate within 3rd to last point */
    for (; dsp_phase_index <= end_index && dsp_i < FLUID_BUFSIZE; dsp_i++)
    {
      coeffs = sinc_table7[fluid_phase_fract_to_tablerow (dsp_phase)];

      dsp_buf[dsp_i] = dsp_amp
	* (coeffs[0] * (fluid_real_t)dsp_data[dsp_phase_index-3]
	   + coeffs[1] * (fluid_real_t)dsp_data[dsp_phase_index-2]
	   + coeffs[2] * (fluid_real_t)dsp_data[dsp_phase_index-1]
	   + coeffs[3] * (fluid_real_t)dsp_data[dsp_phase_index]
	   + coeffs[4] * (fluid_real_t)dsp_data[dsp_phase_index+1]
	   + coeffs[5] * (fluid_real_t)dsp_data[dsp_phase_index+2]
	   + coeffs[6] * (fluid_real_t)end_points[0]);

      /* increment phase and amplitude */
      fluid_phase_incr (dsp_phase, dsp_phase_incr);
      dsp_phase_index = fluid_phase_index (dsp_phase);
      dsp_amp += dsp_amp_incr;
    }

    end_index++;	/* we're now interpolating the 2nd to last point */

    /* interpolate within 2nd to last point */
    for (; dsp_phase_index <= end_index && dsp_i < FLUID_BUFSIZE; dsp_i++)
    {
      coeffs = sinc_table7[fluid_phase_fract_to_tablerow (dsp_phase)];

      dsp_buf[dsp_i] = dsp_amp
	* (coeffs[0] * (fluid_real_t)dsp_data[dsp_phase_index-3]
	   + coeffs[1] * (fluid_real_t)dsp_data[dsp_phase_index-2]
	   + coeffs[2] * (fluid_real_t)dsp_data[dsp_phase_index-1]
	   + coeffs[3] * (fluid_real_t)dsp_data[dsp_phase_index]
	   + coeffs[4] * (fluid_real_t)dsp_data[dsp_phase_index+1]
	   + coeffs[5] * (fluid_real_t)end_points[0]
	   + coeffs[6] * (fluid_real_t)end_points[1]);

      /* increment phase and amplitude */
      fluid_phase_incr (dsp_phase, dsp_phase_incr);
      dsp_phase_index = fluid_phase_index (dsp_phase);
      dsp_amp += dsp_amp_incr;
    }

    end_index++;	/* we're now interpolating the last point */

    /* interpolate within last point */
    for (; dsp_phase_index <= end_index && dsp_i < FLUID_BUFSIZE; dsp_i++)
    {
      coeffs = sinc_table7[fluid_phase_fract_to_tablerow (dsp_phase)];

      dsp_buf[dsp_i] = dsp_amp
	* (coeffs[0] * (fluid_real_t)dsp_data[dsp_phase_index-3]
	   + coeffs[1] * (fluid_real_t)dsp_data[dsp_phase_index-2]
	   + coeffs[2] * (fluid_real_t)dsp_data[dsp_phase_index-1]
	   + coeffs[3] * (fluid_real_t)dsp_data[dsp_phase_index]
	   + coeffs[4] * (fluid_real_t)end_points[0]
	   + coeffs[5] * (fluid_real_t)end_points[1]
	   + coeffs[6] * (fluid_real_t)end_points[2]);

      /* increment phase and amplitude */
      fluid_phase_incr (dsp_phase, dsp_phase_incr);
      dsp_phase_index = fluid_phase_index (dsp_phase);
      dsp_amp += dsp_amp_incr;
    }

    if (!looping) break;	/* break out if not looping (end of sample) */

    /* go back to loop start */
    if (dsp_phase_index > end_index)
    {
      fluid_phase_sub_int (dsp_phase, voice->loopend - voice->loopstart);

      if (!voice->has_looped)
      {
	voice->has_looped = 1;
	start_index = voice->loopstart;
	start_points[0] = dsp_data[voice->loopend - 1];
	start_points[1] = dsp_data[voice->loopend - 2];
	start_points[2] = dsp_data[voice->loopend - 3];
      }
    }

    /* break out if filled buffer */
    if (dsp_i >= FLUID_BUFSIZE) break;

    end_index -= 3;	/* set end back to 4th to last sample point */
  }

  /* sub 1/2 sample from dsp_phase since 7th order interpolation is centered on
   * the 4th sample point (correct back to real value) */
  fluid_phase_decr (dsp_phase, (fluid_phase_t)0x80000000);

  voice->phase = dsp_phase;
  voice->amp = dsp_amp;

  return (dsp_i);
}