summaryrefslogtreecommitdiff
path: root/libs/evoral/src/Curve.cpp
blob: aed972659bed422cf80772ff13fbc443386252ab (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
/* This file is part of Evoral.
 * Copyright (C) 2008 David Robillard <http://drobilla.net>
 * Copyright (C) 2000-2008 Paul Davis
 *
 * Evoral is free software; you can redistribute it and/or modify it under the
 * terms of the GNU General Public License as published by the Free Software
 * Foundation; either version 2 of the License, or (at your option) any later
 * version.
 *
 * Evoral is distributed in the hope that it will be useful, but WITHOUT ANY
 * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 * FOR A PARTICULAR PURPOSE.  See the GNU General Public License for details.
 *
 * You should have received a copy of the GNU General Public License along
 * with this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
 */

#include <iostream>
#include <float.h>
#include <cmath>
#include <climits>
#include <cfloat>
#include <cmath>
#include <vector>

#include <glibmm/threads.h>

#include "evoral/Curve.hpp"
#include "evoral/ControlList.hpp"

using namespace std;
using namespace sigc;

namespace Evoral {


Curve::Curve (const ControlList& cl)
	: _dirty (true)
	, _list (cl)
{
}

void
Curve::solve ()
{
	uint32_t npoints;

	if (!_dirty) {
		return;
	}

	if ((npoints = _list.events().size()) > 2) {

		/* Compute coefficients needed to efficiently compute a constrained spline
		   curve. See "Constrained Cubic Spline Interpolation" by CJC Kruger
		   (www.korf.co.uk/spline.pdf) for more details.
		*/

		vector<double> x(npoints);
		vector<double> y(npoints);
		uint32_t i;
		ControlList::EventList::const_iterator xx;

		for (i = 0, xx = _list.events().begin(); xx != _list.events().end(); ++xx, ++i) {
			x[i] = (double) (*xx)->when;
			y[i] = (double) (*xx)->value;
		}

		double lp0, lp1, fpone;

		lp0 = (x[1] - x[0])/(y[1] - y[0]);
		lp1 = (x[2] - x[1])/(y[2] - y[1]);

		if (lp0*lp1 < 0) {
			fpone = 0;
		} else {
			fpone = 2 / (lp1 + lp0);
		}

		double fplast = 0;

		for (i = 0, xx = _list.events().begin(); xx != _list.events().end(); ++xx, ++i) {

			double xdelta;   /* gcc is wrong about possible uninitialized use */
			double xdelta2;  /* ditto */
			double ydelta;   /* ditto */
			double fppL, fppR;
			double fpi;

			if (i > 0) {
				xdelta = x[i] - x[i-1];
				xdelta2 = xdelta * xdelta;
				ydelta = y[i] - y[i-1];
			}

			/* compute (constrained) first derivatives */

			if (i == 0) {

				/* first segment */

				fplast = ((3 * (y[1] - y[0]) / (2 * (x[1] - x[0]))) - (fpone * 0.5));

				/* we don't store coefficients for i = 0 */

				continue;

			} else if (i == npoints - 1) {

				/* last segment */

				fpi = ((3 * ydelta) / (2 * xdelta)) - (fplast * 0.5);

			} else {

				/* all other segments */

				double slope_before = ((x[i+1] - x[i]) / (y[i+1] - y[i]));
				double slope_after = (xdelta / ydelta);

				if (slope_after * slope_before < 0.0) {
					/* slope changed sign */
					fpi = 0.0;
				} else {
					fpi = 2 / (slope_before + slope_after);
				}
			}

			/* compute second derivative for either side of control point `i' */

			fppL = (((-2 * (fpi + (2 * fplast))) / (xdelta))) +
				((6 * ydelta) / xdelta2);

			fppR = (2 * ((2 * fpi) + fplast) / xdelta) -
				((6 * ydelta) / xdelta2);

			/* compute polynomial coefficients */

			double b, c, d;

			d = (fppR - fppL) / (6 * xdelta);
			c = ((x[i] * fppL) - (x[i-1] * fppR))/(2 * xdelta);

			double xim12, xim13;
			double xi2, xi3;

			xim12 = x[i-1] * x[i-1];  /* "x[i-1] squared" */
			xim13 = xim12 * x[i-1];   /* "x[i-1] cubed" */
			xi2 = x[i] * x[i];        /* "x[i] squared" */
			xi3 = xi2 * x[i];         /* "x[i] cubed" */

			b = (ydelta - (c * (xi2 - xim12)) - (d * (xi3 - xim13))) / xdelta;

			/* store */

			(*xx)->create_coeffs();
			(*xx)->coeff[0] = y[i-1] - (b * x[i-1]) - (c * xim12) - (d * xim13);
			(*xx)->coeff[1] = b;
			(*xx)->coeff[2] = c;
			(*xx)->coeff[3] = d;

			fplast = fpi;
		}

	}

	_dirty = false;
}

bool
Curve::rt_safe_get_vector (double x0, double x1, float *vec, int32_t veclen)
{
	Glib::Threads::RWLock::ReaderLock lm(_list.lock(), Glib::Threads::TRY_LOCK);

	if (!lm.locked()) {
		return false;
	} else {
		_get_vector (x0, x1, vec, veclen);
		return true;
	}
}

void
Curve::get_vector (double x0, double x1, float *vec, int32_t veclen)
{
	Glib::Threads::RWLock::ReaderLock lm(_list.lock());
	_get_vector (x0, x1, vec, veclen);
}

void
Curve::_get_vector (double x0, double x1, float *vec, int32_t veclen)
{
	double rx, lx, hx, max_x, min_x;
	int32_t i;
	int32_t original_veclen;
	int32_t npoints;

	if (veclen == 0) {
		return;
	}

	if ((npoints = _list.events().size()) == 0) {
		/* no events in list, so just fill the entire array with the default value */
		for (int32_t i = 0; i < veclen; ++i) {
			vec[i] = _list.default_value();
		}
		return;
	}

	if (npoints == 1) {
		for (int32_t i = 0; i < veclen; ++i) {
			vec[i] = _list.events().front()->value;
		}
		return;
	}

	/* events is now known not to be empty */

	max_x = _list.events().back()->when;
	min_x = _list.events().front()->when;

	if (x0 > max_x) {
		/* totally past the end - just fill the entire array with the final value */	
		for (int32_t i = 0; i < veclen; ++i) {
			vec[i] = _list.events().back()->value;
		}
		return;
	}

	if (x1 < min_x) {
		/* totally before the first event - fill the entire array with
		 * the initial value.
		 */
		for (int32_t i = 0; i < veclen; ++i) {
			vec[i] = _list.events().front()->value;
		}
		return;
	}

	original_veclen = veclen;

	if (x0 < min_x) {

		/* fill some beginning section of the array with the
		   initial (used to be default) value
		*/

		double frac = (min_x - x0) / (x1 - x0);
		int64_t fill_len = (int64_t) floor (veclen * frac);

		fill_len = min (fill_len, (int64_t)veclen);

		for (i = 0; i < fill_len; ++i) {
			vec[i] = _list.events().front()->value;
		}

		veclen -= fill_len;
		vec += fill_len;
	}

	if (veclen && x1 > max_x) {

		/* fill some end section of the array with the default or final value */

		double frac = (x1 - max_x) / (x1 - x0);
		int64_t fill_len = (int64_t) floor (original_veclen * frac);
		float val;

		fill_len = min (fill_len, (int64_t)veclen);
		val = _list.events().back()->value;

		for (i = veclen - fill_len; i < veclen; ++i) {
			vec[i] = val;
		}

		veclen -= fill_len;
	}

	lx = max (min_x, x0);
	hx = min (max_x, x1);

	if (npoints == 2) {

		/* linear interpolation between 2 points */

		/* XXX: this numerator / denominator stuff is pretty grim, but it's the only
		   way I could get the maths to be accurate; doing everything with pure doubles
		   gives ~1e-17 errors in the vec[i] computation.
		*/

		/* gradient of the line */
		double const m_num = _list.events().back()->value - _list.events().front()->value;
		double const m_den = _list.events().back()->when - _list.events().front()->when;

		/* y intercept of the line */
		double const c = double (_list.events().back()->value) - (m_num * _list.events().back()->when / m_den);

		/* dx that we are using */
		double dx_num = 0;
		double dx_den = 1;
		if (veclen > 1) {
			dx_num = hx - lx;
			dx_den = veclen - 1;
			for (int i = 0; i < veclen; ++i) {
				vec[i] = (lx * (m_num / m_den) + m_num * i * dx_num / (m_den * dx_den)) + c;
			}
		} else {
			vec[0] = lx * (m_num / m_den) + c;
		}

		return;
	}

	if (_dirty) {
		solve ();
	}

	rx = lx;

	double dx = 0;
	if (veclen > 1) {
		dx = (hx - lx) / (veclen - 1);
	}

	for (i = 0; i < veclen; ++i, rx += dx) {
		vec[i] = multipoint_eval (rx);
	}
}

double
Curve::unlocked_eval (double x)
{
	// I don't see the point of this...

	if (_dirty) {
		solve ();
	}

	return _list.unlocked_eval (x);
}

double
Curve::multipoint_eval (double x)
{
	pair<ControlList::EventList::const_iterator,ControlList::EventList::const_iterator> range;

	ControlList::LookupCache& lookup_cache = _list.lookup_cache();

	if ((lookup_cache.left < 0) ||
	    ((lookup_cache.left > x) ||
	     (lookup_cache.range.first == _list.events().end()) ||
	     ((*lookup_cache.range.second)->when < x))) {

		ControlEvent cp (x, 0.0);

		lookup_cache.range = equal_range (_list.events().begin(), _list.events().end(), &cp, ControlList::time_comparator);
	}

	range = lookup_cache.range;

	/* EITHER

	   a) x is an existing control point, so first == existing point, second == next point

	   OR

	   b) x is between control points, so range is empty (first == second, points to where
	       to insert x)

	*/

	if (range.first == range.second) {

		/* x does not exist within the list as a control point */

		lookup_cache.left = x;

		if (range.first == _list.events().begin()) {
			/* we're before the first point */
			// return default_value;
			return _list.events().front()->value;
		}

		if (range.second == _list.events().end()) {
			/* we're after the last point */
			return _list.events().back()->value;
		}

		ControlEvent* after = (*range.second);
		range.second--;
		ControlEvent* before = (*range.second);

		double vdelta = after->value - before->value;

		if (vdelta == 0.0) {
			return before->value;
		}

		double tdelta = x - before->when;
		double trange = after->when - before->when;

		if (_list.interpolation() == ControlList::Curved && after->coeff) {
				ControlEvent* ev = after;
				double x2 = x * x;
				return ev->coeff[0] + (ev->coeff[1] * x) + (ev->coeff[2] * x2) + (ev->coeff[3] * x2 * x);
		} else {
			return before->value + (vdelta * (tdelta / trange));
		}
	}

	/* x is a control point in the data */
	/* invalidate the cached range because its not usable */
	lookup_cache.left = -1;
	return (*range.first)->value;
}

} // namespace Evoral

extern "C" {

void
curve_get_vector_from_c (void *arg, double x0, double x1, float* vec, int32_t vecsize)
{
	static_cast<Evoral::Curve*>(arg)->get_vector (x0, x1, vec, vecsize);
}

}