summaryrefslogtreecommitdiff
path: root/libs/canvas/utils.cc
blob: 2c8905b331a0233c97fc12836a07ae2dd7ad23e3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
/*
    Copyright (C) 2011-2013 Paul Davis
    Author: Carl Hetherington <cth@carlh.net>

    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program; if not, write to the Free Software
    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/

#include <algorithm>
#include <cmath>
#include <stdint.h>
#include <cairomm/context.h>

#include "canvas/utils.h"

using namespace std;
using namespace ArdourCanvas;

void
ArdourCanvas::set_source_rgba (Cairo::RefPtr<Cairo::Context> context, Color color)
{
	context->set_source_rgba (
		((color >> 24) & 0xff) / 255.0,
		((color >> 16) & 0xff) / 255.0,
		((color >>  8) & 0xff) / 255.0,
		((color >>  0) & 0xff) / 255.0
		);
}

void
ArdourCanvas::set_source_rgb_a (Cairo::RefPtr<Cairo::Context> context, Color color, float alpha)
{
	context->set_source_rgba (
		((color >> 24) & 0xff) / 255.0,
		((color >> 16) & 0xff) / 255.0,
		((color >>  8) & 0xff) / 255.0,
		alpha
		);
}

void
ArdourCanvas::set_source_rgba (cairo_t *cr, Color color)
{
	cairo_set_source_rgba ( cr,
		((color >> 24) & 0xff) / 255.0,
		((color >> 16) & 0xff) / 255.0,
		((color >>  8) & 0xff) / 255.0,
		((color >>  0) & 0xff) / 255.0
		);
}

void
ArdourCanvas::set_source_rgb_a (cairo_t *cr, Color color, float alpha)
{
	cairo_set_source_rgba ( cr,
		((color >> 24) & 0xff) / 255.0,
		((color >> 16) & 0xff) / 255.0,
		((color >>  8) & 0xff) / 255.0,
		alpha
		);
}

ArdourCanvas::Distance
ArdourCanvas::distance_to_segment_squared (Duple const & p, Duple const & p1, Duple const & p2, double& t, Duple& at)
{
	static const double kMinSegmentLenSquared = 0.00000001;  // adjust to suit.  If you use float, you'll probably want something like 0.000001f
	static const double kEpsilon = 1.0E-14;  // adjust to suit.  If you use floats, you'll probably want something like 1E-7f
	double dx = p2.x - p1.x;
	double dy = p2.y - p1.y;
	double dp1x = p.x - p1.x;
	double dp1y = p.y - p1.y;
	const double segLenSquared = (dx * dx) + (dy * dy);

	if (segLenSquared >= -kMinSegmentLenSquared && segLenSquared <= kMinSegmentLenSquared) {
		// segment is a point.
		at = p1;
		t = 0.0;
		return ((dp1x * dp1x) + (dp1y * dp1y));
	}


	// Project a line from p to the segment [p1,p2].  By considering the line
	// extending the segment, parameterized as p1 + (t * (p2 - p1)),
	// we find projection of point p onto the line.
	// It falls where t = [(p - p1) . (p2 - p1)] / |p2 - p1|^2

	t = ((dp1x * dx) + (dp1y * dy)) / segLenSquared;

	if (t < kEpsilon) {
		// intersects at or to the "left" of first segment vertex (p1.x, p1.y).  If t is approximately 0.0, then
		// intersection is at p1.  If t is less than that, then there is no intersection (i.e. p is not within
		// the 'bounds' of the segment)
		if (t > -kEpsilon) {
			// intersects at 1st segment vertex
			t = 0.0;
		}
		// set our 'intersection' point to p1.
		at = p1;
		// Note: If you wanted the ACTUAL intersection point of where the projected lines would intersect if
		// we were doing PointLineDistanceSquared, then qx would be (p1.x + (t * dx)) and qy would be (p1.y + (t * dy)).

	} else if (t > (1.0 - kEpsilon)) {
		// intersects at or to the "right" of second segment vertex (p2.x, p2.y).  If t is approximately 1.0, then
		// intersection is at p2.  If t is greater than that, then there is no intersection (i.e. p is not within
		// the 'bounds' of the segment)
		if (t < (1.0 + kEpsilon)) {
			// intersects at 2nd segment vertex
			t = 1.0;
		}
		// set our 'intersection' point to p2.
		at = p2;
		// Note: If you wanted the ACTUAL intersection point of where the projected lines would intersect if
		// we were doing PointLineDistanceSquared, then qx would be (p1.x + (t * dx)) and qy would be (p1.y + (t * dy)).
	} else {
		// The projection of the point to the point on the segment that is perpendicular succeeded and the point
		// is 'within' the bounds of the segment.  Set the intersection point as that projected point.
		at = Duple (p1.x + (t * dx), p1.y + (t * dy));
	}

	// return the squared distance from p to the intersection point.  Note that we return the squared distance
	// as an optimization because many times you just need to compare relative distances and the squared values
	// works fine for that.  If you want the ACTUAL distance, just take the square root of this value.
	double dpqx = p.x - at.x;
	double dpqy = p.y - at.y;

	return ((dpqx * dpqx) + (dpqy * dpqy));
}