summaryrefslogtreecommitdiff
path: root/libs/canvas/curve.cc
blob: b5bab9c8677b181ce320e66cea702623a5cc8ac7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
/*
    Copyright (C) 2013 Paul Davis

    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program; if not, write to the Free Software
    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

*/

#include <cmath>
#include <exception>
#include <algorithm>

#include "canvas/curve.h"

using namespace ArdourCanvas;
using std::min;
using std::max;

Curve::Curve (Group* parent)
	: Item (parent)
	, PolyItem (parent)
	, Fill (parent)
	, n_samples (0)
	, points_per_segment (16)
	, curve_type (CatmullRomCentripetal)
{
}

/** When rendering the curve, we will always draw a fixed number of straight
 * line segments to span the x-axis extent of the curve. More segments:
 * smoother visual rendering. Less rendering: closer to a visibily poly-line
 * render.
 */
void
Curve::set_points_per_segment (uint32_t n)
{
	/* this only changes our appearance rather than the bounding box, so we
	   just need to schedule a redraw rather than notify the parent of any
	   changes
	*/
	points_per_segment = n;
	interpolate ();
	redraw ();
}

void
Curve::compute_bounding_box () const
{
	PolyItem::compute_bounding_box ();

	/* possibly add extents of any point indicators here if we ever do that */
}

void
Curve::set (Points const& p)
{
	PolyItem::set (p);
	interpolate ();
}

void
Curve::interpolate ()
{
	samples.clear ();
	interpolate (_points, points_per_segment, CatmullRomCentripetal, false, samples);
	n_samples = samples.size();
}

/* Cartmull-Rom code from http://stackoverflow.com/questions/9489736/catmull-rom-curve-with-no-cusps-and-no-self-intersections/19283471#19283471
 * 
 * Thanks to Ted for his Java version, which I translated into Ardour-idiomatic
 * C++ here.
 */

/**
 * Calculate the same values but introduces the ability to "parameterize" the t
 * values used in the calculation. This is based on Figure 3 from
 * http://www.cemyuksel.com/research/catmullrom_param/catmullrom.pdf
 *
 * @param p An array of double values of length 4, where interpolation
 * occurs from p1 to p2.
 * @param time An array of time measures of length 4, corresponding to each
 * p value.
 * @param t the actual interpolation ratio from 0 to 1 representing the
 * position between p1 and p2 to interpolate the value.
 */
static double 
__interpolate (double p[4], double time[4], double t) 
{
        const double L01 = p[0] * (time[1] - t) / (time[1] - time[0]) + p[1] * (t - time[0]) / (time[1] - time[0]);
        const double L12 = p[1] * (time[2] - t) / (time[2] - time[1]) + p[2] * (t - time[1]) / (time[2] - time[1]);
        const double L23 = p[2] * (time[3] - t) / (time[3] - time[2]) + p[3] * (t - time[2]) / (time[3] - time[2]);
        const double L012 = L01 * (time[2] - t) / (time[2] - time[0]) + L12 * (t - time[0]) / (time[2] - time[0]);
        const double L123 = L12 * (time[3] - t) / (time[3] - time[1]) + L23 * (t - time[1]) / (time[3] - time[1]);
        const double C12 = L012 * (time[2] - t) / (time[2] - time[1]) + L123 * (t - time[1]) / (time[2] - time[1]);
        return C12;
}   

/**
 * Given a list of control points, this will create a list of points_per_segment
 * points spaced uniformly along the resulting Catmull-Rom curve.
 *
 * @param points The list of control points, leading and ending with a 
 * coordinate that is only used for controling the spline and is not visualized.
 * @param index The index of control point p0, where p0, p1, p2, and p3 are
 * used in order to create a curve between p1 and p2.
 * @param points_per_segment The total number of uniformly spaced interpolated
 * points to calculate for each segment. The larger this number, the
 * smoother the resulting curve.
 * @param curve_type Clarifies whether the curve should use uniform, chordal
 * or centripetal curve types. Uniform can produce loops, chordal can
 * produce large distortions from the original lines, and centripetal is an
 * optimal balance without spaces.
 * @return the list of coordinates that define the CatmullRom curve
 * between the points defined by index+1 and index+2.
 */
static void
_interpolate (const Points& points, Points::size_type index, int points_per_segment, Curve::SplineType curve_type, Points& results) 
{
        double x[4];
        double y[4];
        double time[4];

        for (int i = 0; i < 4; i++) {
                x[i] = points[index + i].x;
                y[i] = points[index + i].y;
                time[i] = i;
        }
        
        double tstart = 1;
        double tend = 2;

        if (curve_type != Curve::CatmullRomUniform) {
                double total = 0;
                for (int i = 1; i < 4; i++) {
                        double dx = x[i] - x[i - 1];
                        double dy = y[i] - y[i - 1];
                        if (curve_type == Curve::CatmullRomCentripetal) {
                                total += pow (dx * dx + dy * dy, .25);
                        } else {
                                total += pow (dx * dx + dy * dy, .5);
                        }
                        time[i] = total;
                }
                tstart = time[1];
                tend = time[2];
        }

        int segments = points_per_segment - 1;
        results.push_back (points[index + 1]);

        for (int i = 1; i < segments; i++) {
                double xi = __interpolate (x, time, tstart + (i * (tend - tstart)) / segments);
                double yi = __interpolate (y, time, tstart + (i * (tend - tstart)) / segments);
                results.push_back (Duple (xi, yi));
        }

        results.push_back (points[index + 2]);
}

/**
 * This method will calculate the Catmull-Rom interpolation curve, returning
 * it as a list of Coord coordinate objects.  This method in particular
 * adds the first and last control points which are not visible, but required
 * for calculating the spline.
 *
 * @param coordinates The list of original straight line points to calculate
 * an interpolation from.
 * @param points_per_segment The integer number of equally spaced points to
 * return along each curve.  The actual distance between each
 * point will depend on the spacing between the control points.
 * @return The list of interpolated coordinates.
 * @param curve_type Chordal (stiff), Uniform(floppy), or Centripetal(medium)
 * @throws gov.ca.water.shapelite.analysis.CatmullRomException if
 * points_per_segment is less than 2.
 */

void
Curve::interpolate (const Points& coordinates, uint32_t points_per_segment, SplineType curve_type, bool closed, Points& results)
{
        if (points_per_segment < 2) {
                return;
        }
        
        // Cannot interpolate curves given only two points.  Two points
        // is best represented as a simple line segment.
        if (coordinates.size() < 3) {
                results = coordinates;
                return;
        }

        // Copy the incoming coordinates. We need to modify it during interpolation
        Points vertices = coordinates;
        
        // Test whether the shape is open or closed by checking to see if
        // the first point intersects with the last point.  M and Z are ignored.
        if (closed) {
                // Use the second and second from last points as control points.
                // get the second point.
                Duple p2 = vertices[1];
                // get the point before the last point
                Duple pn1 = vertices[vertices.size() - 2];
                
                // insert the second from the last point as the first point in the list
                // because when the shape is closed it keeps wrapping around to
                // the second point.
                vertices.insert(vertices.begin(), pn1);
                // add the second point to the end.
                vertices.push_back(p2);
        } else {
                // The shape is open, so use control points that simply extend
                // the first and last segments
                
                // Get the change in x and y between the first and second coordinates.
                double dx = vertices[1].x - vertices[0].x;
                double dy = vertices[1].y - vertices[0].y;
                
                // Then using the change, extrapolate backwards to find a control point.
                double x1 = vertices[0].x - dx;
                double y1 = vertices[0].y - dy;
                
                // Actaully create the start point from the extrapolated values.
                Duple start (x1, y1);
                
                // Repeat for the end control point.
                int n = vertices.size() - 1;
                dx = vertices[n].x - vertices[n - 1].x;
                dy = vertices[n].y - vertices[n - 1].y;
                double xn = vertices[n].x + dx;
                double yn = vertices[n].y + dy;
                Duple end (xn, yn);
                
                // insert the start control point at the start of the vertices list.
                vertices.insert (vertices.begin(), start);
                
                // append the end control ponit to the end of the vertices list.
                vertices.push_back (end);
        }
        
        // When looping, remember that each cycle requires 4 points, starting
        // with i and ending with i+3.  So we don't loop through all the points.
        
        for (Points::size_type i = 0; i < vertices.size() - 3; i++) {

                // Actually calculate the Catmull-Rom curve for one segment.
		Points r;

                _interpolate (vertices, i, points_per_segment, curve_type, r);
 
                // Since the middle points are added twice, once for each bordering
                // segment, we only add the 0 index result point for the first
                // segment.  Otherwise we will have duplicate points.

                if (results.size() > 0) {
                        r.erase (r.begin());
                }
                
                // Add the coordinates for the segment to the result list.

                results.insert (results.end(), r.begin(), r.end());
        }
}

void
Curve::render (Rect const & area, Cairo::RefPtr<Cairo::Context> context) const
{
	if (!_outline || _points.size() < 2 || !_bounding_box) {
		return;
	}

	Rect self = item_to_window (_bounding_box.get());
	boost::optional<Rect> d = self.intersection (area);
	assert (d);
	Rect draw = d.get ();

	/* Our approach is to always draw n_segments across our total size.
	 *
	 * This is very inefficient if we are asked to only draw a small
	 * section of the curve. For now we rely on cairo clipping to help
	 * with this.
	 */
	

	setup_outline_context (context);

	if (_points.size() == 2) {

		/* straight line */

		Duple window_space;

		window_space = item_to_window (_points.front());
		context->move_to (window_space.x, window_space.y);
		window_space = item_to_window (_points.back());
		context->line_to (window_space.x, window_space.y);

		context->stroke ();

	} else {

		/* curve of at least 3 points */

		/* x-axis limits of the curve, in window space coordinates */

		Duple w1 = item_to_window (Duple (_points.front().x, 0.0));
		Duple w2 = item_to_window (Duple (_points.back().x, 0.0));

		/* clamp actual draw to area bound by points, rather than our bounding box which is slightly different */

		context->save ();
		context->rectangle (draw.x0, draw.y0, draw.width(), draw.height());
		context->clip ();

		/* expand drawing area by several pixels on each side to avoid cairo stroking effects at the boundary.
		   they will still occur, but cairo's clipping will hide them.
		 */

		draw = draw.expand (4.0);

		/* now clip it to the actual points in the curve */
		
		if (draw.x0 < w1.x) {
			draw.x0 = w1.x;
		}

		if (draw.x1 >= w2.x) {
			draw.x1 = w2.x;
		}

		/* find left and right-most sample */
		Points::size_type left = 0;
		Points::size_type right = n_samples;

		for (Points::size_type idx = 0; idx < n_samples - 1; ++idx) {
			left = idx;
			if (samples[idx].x >= draw.x0) break;
		}
		for (Points::size_type idx = n_samples; idx > left + 1; --idx) {
			if (samples[idx].x <= draw.x1) break;
			right = idx;
		}

		/* draw line between samples */
		Duple window_space;
		window_space = item_to_window (Duple (samples[left].x, samples[left].y));
		context->move_to (window_space.x, window_space.y);
		for (uint32_t idx = left + 1; idx < right; ++idx) {
			window_space = item_to_window (Duple (samples[idx].x, samples[idx].y));
			context->line_to (window_space.x, window_space.y);
		}

		context->stroke ();
		context->restore ();
	}

#if 1
	/* add points */
	
	setup_fill_context (context);
	for (Points::const_iterator p = _points.begin(); p != _points.end(); ++p) {
		Duple window_space (item_to_window (*p));
		context->arc (window_space.x, window_space.y, 5.0, 0.0, 2 * M_PI);
		context->stroke ();
	}
#endif
}

bool
Curve::covers (Duple const & pc) const
{
	Duple point = canvas_to_item (pc);

	/* O(N) N = number of points, and not accurate */

	for (Points::const_iterator p = _points.begin(); p != _points.end(); ++p) {

		const Coord dx = point.x - (*p).x;
		const Coord dy = point.y - (*p).y;
		const Coord dx2 = dx * dx;
		const Coord dy2 = dy * dy;

		if ((dx2 < 2.0 && dy2 < 2.0) || (dx2 + dy2 < 4.0)) {
			return true;
		}
	}

	return false;
}