summaryrefslogtreecommitdiff
path: root/libs/canvas/curve.cc
blob: 901e6e405f52c4996d15569026986d805fcf2370 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
/*
    Copyright (C) 2013 Paul Davis

    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program; if not, write to the Free Software
    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

*/

#include <exception>
#include <algorithm>

#include "canvas/curve.h"

using namespace ArdourCanvas;
using std::min;
using std::max;

Curve::Curve (Group* parent)
	: Item (parent)
	, PolyItem (parent)
	, Fill (parent)
	, n_samples (0)
	, n_segments (512)
{
	set_n_samples (256);
}

/** Set the number of points to compute when we smooth the data points into a
 * curve. 
 */
void
Curve::set_n_samples (Points::size_type n)
{
	/* this only changes our appearance rather than the bounding box, so we
	   just need to schedule a redraw rather than notify the parent of any
	   changes
	*/
	n_samples = n;
	samples.assign (n_samples, Duple (0.0, 0.0));
	interpolate ();
}

/** When rendering the curve, we will always draw a fixed number of straight
 * line segments to span the x-axis extent of the curve. More segments:
 * smoother visual rendering. Less rendering: closer to a visibily poly-line
 * render.
 */
void
Curve::set_n_segments (uint32_t n)
{
	/* this only changes our appearance rather than the bounding box, so we
	   just need to schedule a redraw rather than notify the parent of any
	   changes
	*/
	n_segments = n;
	redraw ();
}

void
Curve::compute_bounding_box () const
{
	PolyItem::compute_bounding_box ();

	/* possibly add extents of any point indicators here if we ever do that */
}

void
Curve::set (Points const& p)
{
	PolyItem::set (p);
	interpolate ();
}

void
Curve::interpolate ()
{
	Points::size_type npoints = _points.size ();

	if (npoints < 3) {
		return;
	}

	Duple p;
	double boundary;

	const double xfront = _points.front().x;
	const double xextent = _points.back().x - xfront;

	/* initialize boundary curve points */

	p = _points.front();
	boundary = round (((p.x - xfront)/xextent) * (n_samples - 1));

	for (Points::size_type i = 0; i < boundary; ++i) {
		samples[i] = Duple (i, p.y);
	}

	p = _points.back();
	boundary = round (((p.x - xfront)/xextent) * (n_samples - 1));

	for (Points::size_type i = boundary; i < n_samples; ++i) {
		samples[i] = Duple (i, p.y);
	}

	for (int i = 0; i < (int) npoints - 1; ++i) {

		Points::size_type p1, p2, p3, p4;
		
		p1 = max (i - 1, 0);
		p2 = i;
		p3 = i + 1;
		p4 = min (i + 2, (int) npoints - 1);

		smooth (p1, p2, p3, p4, xfront, xextent);
	}
	
	/* make sure that actual data points are used with their exact values */

	for (Points::const_iterator p = _points.begin(); p != _points.end(); ++p) {
		uint32_t idx = (((*p).x - xfront)/xextent) * (n_samples - 1);
		samples[idx].y = (*p).y;
	}
}

/*
 * This function calculates the curve values between the control points
 * p2 and p3, taking the potentially existing neighbors p1 and p4 into
 * account.
 *
 * This function uses a cubic bezier curve for the individual segments and
 * calculates the necessary intermediate control points depending on the
 * neighbor curve control points.
 *
 */

void
Curve::smooth (Points::size_type p1, Points::size_type p2, Points::size_type p3, Points::size_type p4,
	       double xfront, double xextent)
{
	int i;
	double x0, x3;
	double y0, y1, y2, y3;
	double dx, dy;
	double slope;

	/* the outer control points for the bezier curve. */

	x0 = _points[p2].x;
	y0 = _points[p2].y;
	x3 = _points[p3].x;
	y3 = _points[p3].y;

	/*
	 * the x values of the inner control points are fixed at
	 * x1 = 2/3*x0 + 1/3*x3   and  x2 = 1/3*x0 + 2/3*x3
	 * this ensures that the x values increase linearily with the
	 * parameter t and enables us to skip the calculation of the x
	 * values altogehter - just calculate y(t) evenly spaced.
	 */

	dx = x3 - x0;
	dy = y3 - y0;

	if (dx <= 0) {
		/* error? */
		return;
	}

	if (p1 == p2 && p3 == p4) {
		/* No information about the neighbors,
		 * calculate y1 and y2 to get a straight line
		 */
		y1 = y0 + dy / 3.0;
		y2 = y0 + dy * 2.0 / 3.0;

	} else if (p1 == p2 && p3 != p4) {

		/* only the right neighbor is available. Make the tangent at the
		 * right endpoint parallel to the line between the left endpoint
		 * and the right neighbor. Then point the tangent at the left towards
		 * the control handle of the right tangent, to ensure that the curve
		 * does not have an inflection point.
		 */
		slope = (_points[p4].y - y0) / (_points[p4].x - x0);

		y2 = y3 - slope * dx / 3.0;
		y1 = y0 + (y2 - y0) / 2.0;

	} else if (p1 != p2 && p3 == p4) {

		/* see previous case */
		slope = (y3 - _points[p1].y) / (x3 - _points[p1].x);

		y1 = y0 + slope * dx / 3.0;
		y2 = y3 + (y1 - y3) / 2.0;


	} else /* (p1 != p2 && p3 != p4) */ {

		/* Both neighbors are available. Make the tangents at the endpoints
		 * parallel to the line between the opposite endpoint and the adjacent
		 * neighbor.
		 */

		slope = (y3 - _points[p1].y) / (x3 - _points[p1].x);

		y1 = y0 + slope * dx / 3.0;

		slope = (_points[p4].y - y0) / (_points[p4].x - x0);

		y2 = y3 - slope * dx / 3.0;
	}

	/*
	 * finally calculate the y(t) values for the given bezier values. We can
	 * use homogenously distributed values for t, since x(t) increases linearily.
	 */

	dx = dx / xextent;

	int limit = round (dx * (n_samples - 1));
	const int idx_offset = round (((x0 - xfront)/xextent) * (n_samples - 1));

	for (i = 0; i <= limit; i++) {
		double y, t;
		Points::size_type index;

		t = i / dx / (n_samples - 1);
		
		y =     y0 * (1-t) * (1-t) * (1-t) +
			3 * y1 * (1-t) * (1-t) * t     +
			3 * y2 * (1-t) * t     * t     +
			y3 * t     * t     * t;

		index = i + idx_offset;
		
		if (index < n_samples) {
			Duple d (i, max (y, 0.0));
			samples[index] = d;
		}
	}
}

/** Given a position within the x-axis range of the
 * curve, return the corresponding y-axis value
 */

double
Curve::map_value (double x) const
{
	if (x > 0.0 && x < 1.0) {

		double f;
		Points::size_type index;
		
		/* linearly interpolate between two of our smoothed "samples"
		 */
		
		x = x * (n_samples - 1);
		index = (Points::size_type) x; // XXX: should we explicitly use floor()?
		f = x - index;

		return (1.0 - f) * samples[index].y + f * samples[index+1].y;
		
	} else if (x >= 1.0) {
		return samples.back().y;
	} else {
		return samples.front().y;
	}
}

void
Curve::render (Rect const & area, Cairo::RefPtr<Cairo::Context> context) const
{
	if (!_outline || _points.size() < 2) {
		return;
	}

	/* Our approach is to always draw n_segments across our total size.
	 *
	 * This is very inefficient if we are asked to only draw a small
	 * section of the curve. For now we rely on cairo clipping to help
	 * with this.
	 */
	
	double x;
	double y;

	context->save ();
	context->rectangle (area.x0, area.y0, area.width(),area.height());
	context->clip ();

	setup_outline_context (context);

	if (_points.size() == 2) {

		/* straight line */

		Duple window_space;

		window_space = item_to_window (_points.front());
		context->move_to (window_space.x, window_space.y);
		window_space = item_to_window (_points.back());
		context->line_to (window_space.x, window_space.y);

	} else {

		/* curve of at least 3 points */

		const double xfront = _points.front().x;
		const double xextent = _points.back().x - xfront;

		/* move through points to find the first one inside the
		 * rendering area 
		 */
		
		Points::const_iterator edge = _points.end();
		bool edge_found = false;

		for (Points::const_iterator p = _points.begin(); p != _points.end(); ++p) {
			Duple w (item_to_window (Duple ((*p).x, 0.0)));
			if (w.x >= area.x0) {
				edge_found = true;
				break;
			}
			edge = p;
			
		}

		if (edge == _points.end()) {
			if (edge_found) {
				edge = _points.begin();
			} else {
				return;
			}
		}

		std::cerr << "Start drawing " << distance (_points.begin(), edge) << " into points\n";
		
		x = (*edge).x;
		y = map_value (0.0);
		
		Duple window_space = item_to_window (Duple (x, y));
		context->move_to (window_space.x, window_space.y);
		
		/* if the extent of this curve (in pixels) is small, then we don't need
		 * many segments.
		 */
		
		uint32_t nsegs = area.width();
		double last_x = 0;
		double xoffset = (x-xfront)/xextent;

		std::cerr << " draw " << nsegs << " segments\n";

		for (uint32_t n = 1; n < nsegs; ++n) {

			/* compute item space x coordinate of the start of this segment */
			
			x = xoffset + (n / (double) nsegs);
			y = map_value (x);

			x += xfront + (xextent * x);

			std::cerr << "hspan @ " << x << ' ' << x - last_x << std::endl;
			last_x = x;

			window_space = item_to_window (Duple (x, y));
			context->line_to (window_space.x, window_space.y);

			if (window_space.x > area.x1) {
				/* we're done - the last point was outside the redraw area along the x-axis */
				break;
			}
		}
	}

	context->stroke ();

	/* add points */
	
	setup_fill_context (context);
	for (Points::const_iterator p = _points.begin(); p != _points.end(); ++p) {
		Duple window_space (item_to_window (*p));
		context->arc (window_space.x, window_space.y, 5.0, 0.0, 2 * M_PI);
		context->stroke ();
	}

	context->restore ();
}

bool
Curve::covers (Duple const & pc) const
{
	Duple point = canvas_to_item (pc);

	/* O(N) N = number of points, and not accurate */

	for (Points::const_iterator p = _points.begin(); p != _points.end(); ++p) {

		const Coord dx = point.x - (*p).x;
		const Coord dy = point.y - (*p).y;
		const Coord dx2 = dx * dx;
		const Coord dy2 = dy * dy;

		if ((dx2 < 2.0 && dy2 < 2.0) || (dx2 + dy2 < 4.0)) {
			return true;
		}
	}

	return false;
}