summaryrefslogtreecommitdiff
path: root/libs/ardour/pi_controller.cc
blob: a165aa9e40d379bb3c8dff2a05c81e14163ef0f3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
/*
  Copyright (C) 2008 Torben Hohn

  This program is free software; you can redistribute it and/or modify
  it under the terms of the GNU General Public License as published by
  the Free Software Foundation; either version 2 of the License, or
  (at your option) any later version.

  This program is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  GNU General Public License for more details.

  You should have received a copy of the GNU General Public License
  along with this program; if not, write to the Free Software
  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/

#include <iostream>
#include <cmath>
#include <cstdlib>

#include "ardour/pi_controller.h"

static inline double hann(double x) {
	return 0.5 * (1.0 - cos(2 * M_PI * x));
}

PIController::PIController (double resample_factor, int fir_size)
{
	resample_mean = resample_factor;
	static_resample_factor = resample_factor;
	offset_array = new double[fir_size];
	window_array = new double[fir_size];
	offset_differential_index = 0;
	offset_integral = 0.0;
	smooth_size = fir_size;

	for (int i = 0; i < fir_size; i++) {
                offset_array[i] = 0.0;
                window_array[i] = hann(double(i) / (double(fir_size) - 1.0));
	}

	// These values could be configurable
	catch_factor = 20000;
	catch_factor2 = 4000;
	pclamp = 150.0;
	controlquant = 10000.0;
	fir_empty = false;
}

PIController::~PIController ()
{
	delete [] offset_array;
	delete [] window_array;
}

double
PIController::get_ratio (int fill_level, int period_size)
{
	double offset = fill_level;
	double this_catch_factor = catch_factor;
	double this_catch_factor2 = catch_factor2 * 4096.0/(double)period_size;


	// Save offset.
	if( fir_empty ) {
	    for (int i = 0; i < smooth_size; i++) {
		    offset_array[i] = offset;
	    }
	    fir_empty = false;
	} else {
	    offset_array[(offset_differential_index++) % smooth_size] = offset;
	}

	// Build the mean of the windowed offset array basically fir lowpassing.
	smooth_offset = 0.0;
	for (int i = 0; i < smooth_size; i++) {
                smooth_offset += offset_array[(i + offset_differential_index - 1) % smooth_size] * window_array[i];
	}
	smooth_offset /= double(smooth_size);

	// This is the integral of the smoothed_offset
	offset_integral += smooth_offset;

	std::cerr << smooth_offset << " ";

	// Clamp offset : the smooth offset still contains unwanted noise which would go straigth onto the resample coeff.
	// It only used in the P component and the I component is used for the fine tuning anyways.

	if (fabs(smooth_offset) < pclamp)
                smooth_offset = 0.0;

	smooth_offset += (static_resample_factor - resample_mean) * this_catch_factor;

	// Ok, now this is the PI controller.
	// u(t) = K * (e(t) + 1/T \int e(t') dt')
	// Kp = 1/catch_factor and T = catch_factor2  Ki = Kp/T
	current_resample_factor
                = static_resample_factor - smooth_offset / this_catch_factor - offset_integral / this_catch_factor / this_catch_factor2;

	// Now quantize this value around resample_mean, so that the noise which is in the integral component doesnt hurt.
	current_resample_factor = floor((current_resample_factor - resample_mean) * controlquant + 0.5) / controlquant + resample_mean;

	// Calculate resample_mean so we can init ourselves to saner values.
	// resample_mean = 0.9999 * resample_mean + 0.0001 * current_resample_factor;
	resample_mean = (1.0-0.01) * resample_mean + 0.01 * current_resample_factor;
	std::cerr << fill_level << " " << smooth_offset << " " << offset_integral << " " << current_resample_factor << " " << resample_mean << "\n";
	return current_resample_factor;
}

void
PIController::out_of_bounds()
{
	int i;
	// Set the resample_rate... we need to adjust the offset integral, to do this.
	// first look at the PI controller, this code is just a special case, which should never execute once
	// everything is swung in.
	offset_integral = - (resample_mean - static_resample_factor) * catch_factor * catch_factor2;
	// Also clear the array. we are beginning a new control cycle.
	for (i = 0; i < smooth_size; i++) {
                offset_array[i] = 0.0;
	}
	fir_empty = false;
}


PIChaser::PIChaser() {
	pic = new PIController( 1.0, 16 );
	array_index = 0;
	for( int i=0; i<ESTIMATOR_SIZE; i++ ) {
	    realtime_stamps[i] = 0;
	    chasetime_stamps[i] = 0;
	}

	speed_threshold = 0.2;
	pos_threshold = 4000;
	want_locate_val = 0;
}

void
PIChaser::reset() {
	array_index = 0;
	for( int i=0; i<ESTIMATOR_SIZE; i++ ) {
	    realtime_stamps[i] = 0;
	    chasetime_stamps[i] = 0;
	}
	pic->reset(1.0);
}
PIChaser::~PIChaser() {
	delete pic;
}

double
PIChaser::get_ratio(framepos_t chasetime_measured, framepos_t chasetime, framepos_t slavetime_measured, framepos_t slavetime, bool in_control, int period_size ) {

	feed_estimator( chasetime_measured, chasetime );
	std::cerr << (double)chasetime_measured/48000.0 << " " << chasetime << " " << slavetime << " ";
	double crude = get_estimate();
	double fine;
	framepos_t massaged_chasetime = chasetime + (framepos_t)( (double)(slavetime_measured - chasetime_measured) * crude );

	fine = pic->get_ratio (slavetime - massaged_chasetime, period_size);
	if (in_control) {
	    if (fabs(fine-crude) > crude*speed_threshold) {
		std::cout << "reset to " << crude << " fine = " << fine << "\n";
		pic->reset( crude );
		speed = crude;
	    } else {
		speed = fine;
	    }

	    if (abs(chasetime-slavetime) > pos_threshold) {
		pic->reset( crude );
		speed = crude;
		want_locate_val = chasetime;
		std::cout << "we are off by " << chasetime-slavetime << " want_locate:" << chasetime << "\n";
	    } else {
		want_locate_val = 0;
	    }
	} else {
	    std::cout << "not in control..." << crude << "\n";
	    speed = crude;
	    pic->reset( crude );
	}

	return speed;
}

void
PIChaser::feed_estimator (framepos_t realtime, framepos_t chasetime ) {
	array_index += 1;
	realtime_stamps [ array_index%ESTIMATOR_SIZE ] = realtime;
	chasetime_stamps[ array_index%ESTIMATOR_SIZE ] = chasetime;
}

double
PIChaser::get_estimate() {
	double est = 0;
	int num=0;
	int i;
	framepos_t n1_realtime;
	framepos_t n1_chasetime;
	for( i=(array_index + 1); i<=(array_index + ESTIMATOR_SIZE); i++ ) {
	    if( realtime_stamps[(i)%ESTIMATOR_SIZE] ) {
		n1_realtime = realtime_stamps[(i)%ESTIMATOR_SIZE];
		n1_chasetime = chasetime_stamps[(i)%ESTIMATOR_SIZE];
		i+=1;
		break;
	    }
	}

	for( ; i<=(array_index + ESTIMATOR_SIZE); i++ ) {
	    if( realtime_stamps[(i)%ESTIMATOR_SIZE] ) {
		if( (realtime_stamps[(i)%ESTIMATOR_SIZE] - n1_realtime) > 200 ) {
		    framepos_t n_realtime = realtime_stamps[(i)%ESTIMATOR_SIZE];
		    framepos_t n_chasetime = chasetime_stamps[(i)%ESTIMATOR_SIZE];
		    est += ((double)( n_chasetime - n1_chasetime ))
			  / ((double)( n_realtime - n1_realtime ));
		    n1_realtime = n_realtime;
		    n1_chasetime = n_chasetime;
		    num += 1;
		}
	    }
	}

	if(num)
	    return est/(double)num;
	else
	    return 0.0;
}