summaryrefslogtreecommitdiff
path: root/libs/ardour/kmeterdsp.cc
blob: 2490ae34ec06f39b130aead7ce67d59815db1e13 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
/*
    Copyright (C) 2008-2011 Fons Adriaensen <fons@linuxaudio.org>
    Adopted for Ardour 2013 by Robin Gareus <robin@gareus.org>

    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program; if not, write to the Free Software
    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/

#include <math.h>
#include "ardour/kmeterdsp.h"


float  Kmeterdsp::_omega;


Kmeterdsp::Kmeterdsp (void) :
    _z1 (0),
    _z2 (0),
    _rms (0),
    _flag (false)
{
}


Kmeterdsp::~Kmeterdsp (void)
{
}

void Kmeterdsp::init (int fsamp)
{
    _omega = 9.72f / fsamp; // ballistic filter coefficient
}

void Kmeterdsp::process (float *p, int n)
{
    // Called by JACK's process callback.
    //
    // p : pointer to sample buffer
    // n : number of samples to process

    float  s, t, z1, z2;

    if (_flag) // Display thread has read the rms value.
    {
	_rms  = 0;
	_flag = false;
    }

    // Get filter state.
    z1 = _z1;
    z2 = _z2;

    // Process n samples. Find digital peak value for this
    // period and perform filtering. The second filter is
    // evaluated only every 4th sample - this is just an
    // optimisation.
    t = 0;
    n /= 4;  // Loop is unrolled by 4.
    while (n--)
    {
	s = *p++;
	s *= s;
	if (t < s) t = s;             // Update digital peak.
	z1 += _omega * (s - z1);      // Update first filter.
	s = *p++;
	s *= s;
	if (t < s) t = s;             // Update digital peak.
	z1 += _omega * (s - z1);      // Update first filter.
	s = *p++;
	s *= s;
	if (t < s) t = s;             // Update digital peak.
	z1 += _omega * (s - z1);      // Update first filter.
	s = *p++;
	s *= s;
	if (t < s) t = s;             // Update digital peak.
	z1 += _omega * (s - z1);      // Update first filter.
        z2 += 4 * _omega * (z1 - z2); // Update second filter.
    }
    t = sqrtf (t);

    // Save filter state. The added constants avoid denormals.
    _z1 = z1 + 1e-20f;
    _z2 = z2 + 1e-20f;

    // Adjust RMS value and update maximum since last read().
    s = sqrtf (2 * z2);
    if (s > _rms) _rms = s;
}

/* Returns highest _rms value since last call */
float Kmeterdsp::read ()
{
    float rv= _rms;
    _flag = true; // Resets _rms in next process().
    return rv;
}

void Kmeterdsp::reset ()
{
    _z1 = _z2 = _rms = .0f;
    _flag = false;
}

/* vi:set ts=8 sts=8 sw=4: */