summaryrefslogtreecommitdiff
path: root/libs/ardour/interpolation.cc
blob: a5cdf1ce8b61a56794f07cf978980a1c71107b6c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
#include <stdint.h>
#include <cstdio>

#include "ardour/interpolation.h"

using namespace ARDOUR;

nframes_t
FixedPointLinearInterpolation::interpolate (int channel, nframes_t nframes, Sample *input, Sample *output)
{
	// the idea behind phase is that when the speed is not 1.0, we have to 
	// interpolate between samples and then we have to store where we thought we were. 
	// rather than being at sample N or N+1, we were at N+0.8792922
	// so the "phase" element, if you want to think about this way, 
	// varies from 0 to 1, representing the "offset" between samples
	uint64_t	phase = last_phase[channel];
	
	// acceleration
	int64_t	 phi_delta;

	// phi = fixed point speed
	if (phi != target_phi) {
		phi_delta = ((int64_t)(target_phi - phi)) / nframes;
	} else {
		phi_delta = 0;
	}
	
	// index in the input buffers
	nframes_t   i = 0;

	for (nframes_t outsample = 0; outsample < nframes; ++outsample) {
		i = phase >> 24;
		Sample fractional_phase_part = (phase & fractional_part_mask) / binary_scaling_factor;
		
		if (input && output) {
			// Linearly interpolate into the output buffer
			output[outsample] = 
				input[i] * (1.0f - fractional_phase_part) +
				input[i+1] * fractional_phase_part;
		}
		
		phase += phi + phi_delta;
	}

	last_phase[channel] = (phase & fractional_part_mask);
	
	// playback distance
	return i;
}

void 
FixedPointLinearInterpolation::add_channel_to (int /*input_buffer_size*/, int /*output_buffer_size*/)
{
	last_phase.push_back (0);
}

void 
FixedPointLinearInterpolation::remove_channel_from ()
{
	last_phase.pop_back ();
}

void
FixedPointLinearInterpolation::reset() 
{
	for (size_t i = 0; i <= last_phase.size(); i++) {
		last_phase[i] = 0;
	}
}


nframes_t
LinearInterpolation::interpolate (int channel, nframes_t nframes, Sample *input, Sample *output)
{
	// index in the input buffers
	nframes_t   i = 0;
	
	double acceleration;
	double distance = 0.0;
	
	if (_speed != _target_speed) {
		acceleration = _target_speed - _speed;
	} else {
		acceleration = 0.0;
	}
	
	distance = phase[channel];
	//printf("processing channel: %d\n", channel);
	//printf("phase before: %lf\n", phase[channel]);
	for (nframes_t outsample = 0; outsample < nframes; ++outsample) {
		i = floor(distance);
		Sample fractional_phase_part = distance - i;
		if (fractional_phase_part >= 1.0) {
			fractional_phase_part -= 1.0;
			i++;
		}
		//printf("I: %u, distance: %lf, fractional_phase_part: %lf\n", i, distance, fractional_phase_part);
		
		if (input && output) {
		// Linearly interpolate into the output buffer
			output[outsample] = 
				input[i] * (1.0f - fractional_phase_part) +
				input[i+1] * fractional_phase_part;
		}
		//printf("distance before: %lf\n", distance);
		distance += _speed + acceleration;
		//printf("distance after: %lf, _speed: %lf\n", distance, _speed);
	}
	
	//printf("before assignment: i: %d, distance: %lf\n", i, distance);
	i = floor(distance);
	//printf("after assignment: i: %d, distance: %16lf\n", i, distance);
	phase[channel] = distance - floor(distance);
	//printf("speed: %16lf, i after: %d, distance after: %16lf, phase after: %16lf\n", _speed, i, distance, phase[channel]);
	
	return i;
}

void 
LinearInterpolation::add_channel_to (int /*input_buffer_size*/, int /*output_buffer_size*/)
{
	phase.push_back (0.0);
}

void 
LinearInterpolation::remove_channel_from ()
{
	phase.pop_back ();
}


void
LinearInterpolation::reset() 
{
	for (size_t i = 0; i <= phase.size(); i++) {
		phase[i] = 0.0;
	}
}

LibSamplerateInterpolation::LibSamplerateInterpolation() : state (0)
{
	_speed = 1.0;
}

LibSamplerateInterpolation::~LibSamplerateInterpolation() 
{
	for (size_t i = 0; i < state.size(); i++) {
		state[i] = src_delete (state[i]);
	}
}

void
LibSamplerateInterpolation::set_speed (double new_speed)
{ 
	_speed = new_speed; 
	for (size_t i = 0; i < state.size(); i++) {
		src_set_ratio (state[i], 1.0/_speed);
	}
}

void
LibSamplerateInterpolation::reset_state ()
{
	printf("INTERPOLATION: reset_state()\n");
	for (size_t i = 0; i < state.size(); i++) {
		if (state[i]) {
			src_reset (state[i]);
		} else {
			state[i] = src_new (SRC_SINC_FASTEST, 1, &error);
		}
	}
}

void
LibSamplerateInterpolation::add_channel_to (int input_buffer_size, int output_buffer_size) 
{
	SRC_DATA* newdata = new SRC_DATA;
	
	/* Set up sample rate converter info. */
	newdata->end_of_input = 0 ; 

	newdata->input_frames  = input_buffer_size;
	newdata->output_frames = output_buffer_size;

	newdata->input_frames_used = 0 ;
	newdata->output_frames_gen = 0 ;

	newdata->src_ratio = 1.0/_speed;
	
	data.push_back (newdata);
	state.push_back (0);
	
	reset_state ();
}

void
LibSamplerateInterpolation::remove_channel_from () 
{
	SRC_DATA* d = data.back ();
	delete d;
	data.pop_back ();
	if (state.back ()) {
		src_delete (state.back ());
	}
	state.pop_back ();
	reset_state ();
}

nframes_t
LibSamplerateInterpolation::interpolate (int channel, nframes_t nframes, Sample *input, Sample *output)
{	
	if (!data.size ()) {
		printf ("ERROR: trying to interpolate with no channels\n");
		return 0;
	}
	
	data[channel]->data_in	   = input;
	data[channel]->data_out	  = output;
	
	data[channel]->input_frames  = nframes * _speed;
	data[channel]->output_frames = nframes;
	data[channel]->src_ratio	 = 1.0/_speed; 

	if ((error = src_process (state[channel], data[channel]))) {	
		printf ("\nError : %s\n\n", src_strerror (error));
		exit (1);
	}
	
	//printf("INTERPOLATION: channel %d input_frames_used: %d\n", channel, data[channel]->input_frames_used);
	
	return data[channel]->input_frames_used;
}