summaryrefslogtreecommitdiff
path: root/libs/ardour/interpolation.cc
blob: c3a45a0401735797551ca1cf949bbeff07a55b55 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
#include <stdint.h>
#include <cstdio>

#include "ardour/interpolation.h"

using namespace ARDOUR;

nframes_t
FixedPointLinearInterpolation::interpolate (int channel, nframes_t nframes, Sample *input, Sample *output)
{
	// the idea behind phase is that when the speed is not 1.0, we have to 
	// interpolate between samples and then we have to store where we thought we were. 
	// rather than being at sample N or N+1, we were at N+0.8792922
	// so the "phase" element, if you want to think about this way, 
	// varies from 0 to 1, representing the "offset" between samples
	uint64_t	the_phase = last_phase[channel];
	
	// acceleration
	int64_t	 phi_delta;

	// phi = fixed point speed
	if (phi != target_phi) {
		phi_delta = ((int64_t)(target_phi - phi)) / nframes;
	} else {
		phi_delta = 0;
	}
	
	// index in the input buffers
	nframes_t   i = 0;

	for (nframes_t outsample = 0; outsample < nframes; ++outsample) {
		i = the_phase >> 24;
		Sample fractional_phase_part = (the_phase & fractional_part_mask) / binary_scaling_factor;
		
		if (input && output) {
			// Linearly interpolate into the output buffer
			output[outsample] = 
				input[i] * (1.0f - fractional_phase_part) +
				input[i+1] * fractional_phase_part;
		}
		
		the_phase += phi + phi_delta;
	}

	last_phase[channel] = (the_phase & fractional_part_mask);
	
	// playback distance
	return i;
}

void 
FixedPointLinearInterpolation::add_channel_to (int /*input_buffer_size*/, int /*output_buffer_size*/)
{
	last_phase.push_back (0);
}

void 
FixedPointLinearInterpolation::remove_channel_from ()
{
	last_phase.pop_back ();
}

void
FixedPointLinearInterpolation::reset() 
{
	for (size_t i = 0; i <= last_phase.size(); i++) {
		last_phase[i] = 0;
	}
}


nframes_t
LinearInterpolation::interpolate (int channel, nframes_t nframes, Sample *input, Sample *output)
{
	// index in the input buffers
	nframes_t   i = 0;
	
	double acceleration;
	double distance = 0.0;
	
	if (_speed != _target_speed) {
		acceleration = _target_speed - _speed;
	} else {
		acceleration = 0.0;
	}
	
	distance = phase[channel];
	for (nframes_t outsample = 0; outsample < nframes; ++outsample) {
		i = floor(distance);
		Sample fractional_phase_part = distance - i;
		if (fractional_phase_part >= 1.0) {
			fractional_phase_part -= 1.0;
			i++;
		}
		
		if (input && output) {
		// Linearly interpolate into the output buffer
			output[outsample] = 
				input[i] * (1.0f - fractional_phase_part) +
				input[i+1] * fractional_phase_part;
		}
		distance += _speed + acceleration;
	}
	
	i = floor(distance);
	phase[channel] = distance - floor(distance);
	
	return i;
}

nframes_t
CubicInterpolation::interpolate (int channel, nframes_t nframes, Sample *input, Sample *output)
{
    // index in the input buffers
    nframes_t   i = 0;
    
    double acceleration;
    double distance = 0.0;
    
    if (_speed != _target_speed) {
        acceleration = _target_speed - _speed;
    } else {
        acceleration = 0.0;
    }
    
    distance = phase[channel];
    for (nframes_t outsample = 0; outsample < nframes; ++outsample) {
        i = floor(distance);
        Sample fractional_phase_part = distance - i;
        if (fractional_phase_part >= 1.0) {
            fractional_phase_part -= 1.0;
            i++;
        }
        
        if (input && output) {
            // Cubically interpolate into the output buffer
            output[outsample] = cube_interp(fractional_phase_part, input[i-1], input[i], input[i+1], input[i+2]);
        }
        distance += _speed + acceleration;
    }
    
    i = floor(distance);
    phase[channel] = distance - floor(distance);
    
    return i;
}

SplineInterpolation::SplineInterpolation()
{
    reset ();
}

void SplineInterpolation::reset()
{
    Interpolation::reset();
    M[0] = 0.0;
    M[1] = 0.0;
    M[2] = 0.0;
}

nframes_t
SplineInterpolation::interpolate (int channel, nframes_t nframes, Sample *input, Sample *output)
{
    
    // now interpolate
    // index in the input buffers
    nframes_t   i = 0, delta_i = 0;
    
    double acceleration;
    double distance = 0.0;
    
    if (_speed != _target_speed) {
        acceleration = _target_speed - _speed;
    } else {
        acceleration = 0.0;
    }
    
    distance = phase[channel];
    assert(distance >= 0.0 && distance < 1.0);
    
    for (nframes_t outsample = 0; outsample < nframes; outsample++) {
        i = floor(distance);
        
        double x = double(distance) - double(i);
        
        // if distance is something like 0.999999999999
        // it will get rounded to 1 in the conversion to float above
        while (x >= 1.0) {
            x -= 1.0;
            i++;
        } 
        
        assert(x >= 0.0 && x < 1.0);
        
        if (input && output) {
            // if i changed, recalculate coefficients
            if (delta_i == 1) {
                // if i changed, rotate the M's
                M[0] = M[1];
                M[1] = M[2];
                M[2] = 6.0 * (input[i] - 2.0*input[i+1] + input[i+2]) - 4.0*M[1] - M[0];
                printf("\ny[%d] = %lf\n", i, input[i]);
                printf("y[%d] = %lf\n", i+1, input[i+1]);
                printf("y[%d] = %lf\n\n", i+2, input[i+2]);
                printf("M[2] = %lf  M[1] = %lf  M[0] = %lf y-term: %lf M-term: %lf\n", 
                        M[2], M[1], M[0],  6.0 * (input[i] - 2.0*input[i+1] + input[i+2]),
                        - 4.0*M[1] - M[0]);
            }
            double a3 = (M[1] - M[0]) / 6.0;
            double a2 = M[0] / 2.0;
            double a1 = input[i+1] - input[i] - (M[1] + 2.0*M[0]) / 6.0;
            double a0 = input[i];
            // interpolate into the output buffer
            output[outsample] = ((a3*x + a2)*x + a1)*x + a0;
            //printf( "input[%d/%d] = %lf/%lf  distance: %lf output[%d] = %lf\n", i, i+1, input[i], input[i+1], distance, outsample, output[outsample]);
            
        }
        distance += _speed + acceleration;

        delta_i = floor(distance) - i;
    }
    
    i = floor(distance);
    phase[channel] = distance - floor(distance);
    assert (phase[channel] >= 0.0 && phase[channel] < 1.0);
    
    return i;
}

LibSamplerateInterpolation::LibSamplerateInterpolation() : state (0)
{
	_speed = 1.0;
}

LibSamplerateInterpolation::~LibSamplerateInterpolation() 
{
	for (size_t i = 0; i < state.size(); i++) {
		state[i] = src_delete (state[i]);
	}
}

void
LibSamplerateInterpolation::set_speed (double new_speed)
{ 
	_speed = new_speed; 
	for (size_t i = 0; i < state.size(); i++) {
		src_set_ratio (state[i], 1.0/_speed);
	}
}

void
LibSamplerateInterpolation::reset_state ()
{
	printf("INTERPOLATION: reset_state()\n");
	for (size_t i = 0; i < state.size(); i++) {
		if (state[i]) {
			src_reset (state[i]);
		} else {
			state[i] = src_new (SRC_SINC_FASTEST, 1, &error);
		}
	}
}

void
LibSamplerateInterpolation::add_channel_to (int input_buffer_size, int output_buffer_size) 
{
	SRC_DATA* newdata = new SRC_DATA;
	
	/* Set up sample rate converter info. */
	newdata->end_of_input = 0 ; 

	newdata->input_frames  = input_buffer_size;
	newdata->output_frames = output_buffer_size;

	newdata->input_frames_used = 0 ;
	newdata->output_frames_gen = 0 ;

	newdata->src_ratio = 1.0/_speed;
	
	data.push_back (newdata);
	state.push_back (0);
	
	reset_state ();
}

void
LibSamplerateInterpolation::remove_channel_from () 
{
	SRC_DATA* d = data.back ();
	delete d;
	data.pop_back ();
	if (state.back ()) {
		src_delete (state.back ());
	}
	state.pop_back ();
	reset_state ();
}

nframes_t
LibSamplerateInterpolation::interpolate (int channel, nframes_t nframes, Sample *input, Sample *output)
{	
	if (!data.size ()) {
		printf ("ERROR: trying to interpolate with no channels\n");
		return 0;
	}
	
	data[channel]->data_in	   = input;
	data[channel]->data_out	  = output;
	
	data[channel]->input_frames  = nframes * _speed;
	data[channel]->output_frames = nframes;
	data[channel]->src_ratio	 = 1.0/_speed; 

	if ((error = src_process (state[channel], data[channel]))) {	
		printf ("\nError : %s\n\n", src_strerror (error));
		exit (1);
	}
	
	//printf("INTERPOLATION: channel %d input_frames_used: %d\n", channel, data[channel]->input_frames_used);
	
	return data[channel]->input_frames_used;
}