summaryrefslogtreecommitdiff
path: root/libs/ardour/interpolation.cc
blob: 286030c26db487cb8d825d0bd712119d3be9116a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
/*
    Copyright (C) 2012 Paul Davis

    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program; if not, write to the Free Software
    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

*/

#include <stdint.h>
#include <cstdio>

#include "ardour/interpolation.h"
#include "ardour/midi_buffer.h"

using namespace ARDOUR;


framecnt_t
LinearInterpolation::interpolate (int channel, framecnt_t nframes, Sample *input, Sample *output)
{
	// index in the input buffers
	framecnt_t i = 0;

	double acceleration = 0;

	if (_speed != _target_speed) {
		acceleration = _target_speed - _speed;
	}

	for (framecnt_t outsample = 0; outsample < nframes; ++outsample) {
		double const d = phase[channel] + outsample * (_speed + acceleration);
		i = floor(d);
		Sample fractional_phase_part = d - i;
		if (fractional_phase_part >= 1.0) {
			fractional_phase_part -= 1.0;
			i++;
		}

		if (input && output) {
			// Linearly interpolate into the output buffer
			output[outsample] =
				input[i] * (1.0f - fractional_phase_part) +
				input[i+1] * fractional_phase_part;
		}
	}

	double const distance = phase[channel] + nframes * (_speed + acceleration);
	i = floor(distance);
	phase[channel] = distance - i;
	return i;
}

framecnt_t
CubicInterpolation::interpolate (int channel, framecnt_t nframes, Sample *input, Sample *output)
{
	// index in the input buffers
	framecnt_t   i = 0;

	double acceleration;
	double distance = 0.0;

	if (_speed != _target_speed) {
		acceleration = _target_speed - _speed;
	} else {
		acceleration = 0.0;
	}

	distance = phase[channel];

	if (nframes < 3) {
		/* no interpolation possible */

		if (input && output) {
			for (i = 0; i < nframes; ++i) {
				output[i] = input[i];
			}
		}

		return nframes;
	}

	/* keep this condition out of the inner loop */

	if (input && output) {

		Sample inm1;

		if (floor (distance) == 0.0) {
			/* best guess for the fake point we have to add to be able to interpolate at i == 0:
			   .... maintain slope of first actual segment ...
			   */
			inm1 = input[i] - (input[i+1] - input[i]);
		} else {
			inm1 = input[i-1];
		}

		for (framecnt_t outsample = 0; outsample < nframes; ++outsample) {

			float f = floor (distance);
			float fractional_phase_part = distance - f;

			/* get the index into the input we should start with */

			i = lrintf (f);

			/* fractional_phase_part only reaches 1.0 thanks to float imprecision. In theory
			   it should always be < 1.0. If it ever >= 1.0, then bump the index we use
			   and back it off. This is the point where we "skip" an entire sample in the
			   input, because the phase part has accumulated so much error that we should
			   really be closer to the next sample. or something like that ...
			   */

			if (fractional_phase_part >= 1.0) {
				fractional_phase_part -= 1.0;
				++i;
			}

			// Cubically interpolate into the output buffer: keep this inlined for speed and rely on compiler
			// optimization to take care of the rest
			// shamelessly ripped from Steve Harris' swh-plugins (ladspa-util.h)

			output[outsample] = input[i] + 0.5f * fractional_phase_part * (input[i+1] - inm1 +
					fractional_phase_part * (4.0f * input[i+1] + 2.0f * inm1 - 5.0f * input[i] - input[i+2] +
						fractional_phase_part * (3.0f * (input[i] - input[i+1]) - inm1 + input[i+2])));

			distance += _speed + acceleration;
			inm1 = input[i];
		}

		i = floor(distance);
		phase[channel] = distance - floor(distance);

	} else {
		/* used to calculate play-distance with acceleration (silent roll)
		 * (use same algorithm as real playback for identical rounding/floor'ing)
		 */
		for (framecnt_t outsample = 0; outsample < nframes; ++outsample) {
			distance += _speed + acceleration;
		}
		i = floor(distance);
	}

	return i;
}

framecnt_t
CubicMidiInterpolation::distance (framecnt_t nframes, bool roll)
{
	assert(phase.size() == 1);

	framecnt_t i = 0;

	double acceleration;
	double distance = 0.0;

	if (nframes < 3) {
		return nframes;
	}

	if (_speed != _target_speed) {
		acceleration = _target_speed - _speed;
	} else {
		acceleration = 0.0;
	}

	distance = phase[0];

	for (framecnt_t outsample = 0; outsample < nframes; ++outsample) {
		distance += _speed + acceleration;
	}

	if (roll) {
		phase[0] = distance - floor(distance);
	}

	i = floor(distance);

	return i;
}