summaryrefslogtreecommitdiff
path: root/libs/ardour/disk_reader.cc
blob: 375dda70759f0f4345e193223d07eb67b0c04fb5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
/*
    Copyright (C) 2009-2016 Paul Davis

    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program; if not, write to the Free Software
    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

*/

#include <boost/smart_ptr/scoped_array.hpp>

#include "pbd/enumwriter.h"
#include "pbd/memento_command.h"

#include "ardour/audioengine.h"
#include "ardour/audioplaylist.h"
#include "ardour/audio_buffer.h"
#include "ardour/butler.h"
#include "ardour/debug.h"
#include "ardour/disk_reader.h"
#include "ardour/midi_ring_buffer.h"
#include "ardour/midi_playlist.h"
#include "ardour/midi_track.h"
#include "ardour/pannable.h"
#include "ardour/playlist.h"
#include "ardour/playlist_factory.h"
#include "ardour/session.h"
#include "ardour/session_playlists.h"

#include "pbd/i18n.h"

using namespace ARDOUR;
using namespace PBD;
using namespace std;

ARDOUR::samplecnt_t DiskReader::_chunk_samples = default_chunk_samples ();
PBD::Signal0<void> DiskReader::Underrun;
Sample* DiskReader::_mixdown_buffer = 0;
gain_t* DiskReader::_gain_buffer = 0;
samplecnt_t DiskReader::midi_readahead = 4096;
bool DiskReader::_no_disk_output = false;

DiskReader::DiskReader (Session& s, string const & str, DiskIOProcessor::Flag f)
	: DiskIOProcessor (s, str, f)
	, overwrite_sample (0)
	, overwrite_offset (0)
	, _pending_overwrite (false)
	, overwrite_queued (false)
	, _declick_gain (0)
{
	file_sample[DataType::AUDIO] = 0;
	file_sample[DataType::MIDI] = 0;
}

DiskReader::~DiskReader ()
{
	DEBUG_TRACE (DEBUG::Destruction, string_compose ("DiskReader %1 @ %2 deleted\n", _name, this));

	for (uint32_t n = 0; n < DataType::num_types; ++n) {
		if (_playlists[n]) {
			_playlists[n]->release ();
		}
	}
	delete _midi_buf;
}

void
DiskReader::ReaderChannelInfo::resize (samplecnt_t bufsize)
{
	delete rbuf;
	/* touch memory to lock it */
	rbuf = new RingBufferNPT<Sample> (bufsize);
	memset (rbuf->buffer(), 0, sizeof (Sample) * rbuf->bufsize());
}

int
DiskReader::add_channel_to (boost::shared_ptr<ChannelList> c, uint32_t how_many)
{
	while (how_many--) {
		c->push_back (new ReaderChannelInfo (_session.butler()->audio_diskstream_playback_buffer_size()));
		DEBUG_TRACE (DEBUG::DiskIO, string_compose ("%1: new reader channel, write space = %2 read = %3\n",
		                                            name(),
		                                            c->back()->rbuf->write_space(),
		                                            c->back()->rbuf->read_space()));
	}

	return 0;
}

void
DiskReader::allocate_working_buffers()
{
	/* with varifill buffer refilling, we compute the read size in bytes (to optimize
	   for disk i/o bandwidth) and then convert back into samples. These buffers
	   need to reflect the maximum size we could use, which is 4MB reads, or 2M samples
	   using 16 bit samples.
	*/
	_mixdown_buffer       = new Sample[2*1048576];
	_gain_buffer          = new gain_t[2*1048576];
}

void
DiskReader::free_working_buffers()
{
	delete [] _mixdown_buffer;
	delete [] _gain_buffer;
	_mixdown_buffer       = 0;
	_gain_buffer          = 0;
}

samplecnt_t
DiskReader::default_chunk_samples()
{
	return 65536;
}

bool
DiskReader::set_name (string const & str)
{
	string my_name = X_("player:");
	my_name += str;

	if (_name != my_name) {
		SessionObject::set_name (my_name);
	}

	return true;
}

XMLNode&
DiskReader::state ()
{
	XMLNode& node (DiskIOProcessor::state ());
	node.set_property(X_("type"), X_("diskreader"));
	return node;
}

int
DiskReader::set_state (const XMLNode& node, int version)
{
	if (DiskIOProcessor::set_state (node, version)) {
		return -1;
	}

	return 0;
}

void
DiskReader::realtime_handle_transport_stopped ()
{
}

void
DiskReader::realtime_locate ()
{
}

float
DiskReader::buffer_load () const
{
	/* Note: for MIDI it's not trivial to differentiate the following two cases:

	   1.  The playback buffer is empty because the system has run out of time to fill it.
	   2.  The playback buffer is empty because there is no more data on the playlist.

	   If we use a simple buffer load computation, we will report that the MIDI diskstream
	   cannot keep up when #2 happens, when in fact it can.  Since MIDI data rates
	   are so low compared to audio, just use the audio value here.
	*/

	boost::shared_ptr<ChannelList> c = channels.reader();

	if (c->empty ()) {
		/* no channels, so no buffers, so completely full and ready to playback, sir! */
		return 1.0;
	}

	PBD::RingBufferNPT<Sample>* b = c->front()->rbuf;
	return (float) ((double) b->read_space() / (double) b->bufsize());
}

void
DiskReader::adjust_buffering ()
{
	boost::shared_ptr<ChannelList> c = channels.reader();

	for (ChannelList::iterator chan = c->begin(); chan != c->end(); ++chan) {
		(*chan)->resize (_session.butler()->audio_diskstream_playback_buffer_size());
	}
}

void
DiskReader::playlist_changed (const PropertyChange&)
{
	playlist_modified ();
}

void
DiskReader::playlist_modified ()
{
	if (!i_am_the_modifier && !overwrite_queued) {
		_session.request_overwrite_buffer (_route);
		overwrite_queued = true;
	}
}

int
DiskReader::use_playlist (DataType dt, boost::shared_ptr<Playlist> playlist)
{
        bool prior_playlist = false;

        if (_playlists[dt]) {
	        prior_playlist = true;
        }

        if (DiskIOProcessor::use_playlist (dt, playlist)) {
		return -1;
	}

	/* don't do this if we've already asked for it *or* if we are setting up
	   the diskstream for the very first time - the input changed handling will
	   take care of the buffer refill.
	*/

        if (!overwrite_queued && (prior_playlist || _session.loading())) {
		_session.request_overwrite_buffer (_route);
		overwrite_queued = true;
	}

	return 0;
}

void
DiskReader::run (BufferSet& bufs, samplepos_t start_sample, samplepos_t end_sample,
                 double speed, pframes_t nframes, bool result_required)
{
	uint32_t n;
	boost::shared_ptr<ChannelList> c = channels.reader();
	ChannelList::iterator chan;
	sampleoffset_t disk_samples_to_consume;
	MonitorState ms = _route->monitoring_state ();

	if (_active) {
		if (!_pending_active) {
			_active = false;
			return;
		}
	} else {
		if (_pending_active) {
			_active = true;
		} else {
			return;
		}
	}

	if ((speed == 0.0) && (ms == MonitoringDisk)) {
		/* no channels, or stopped. Don't accidentally pass any data
		 * from disk into our outputs (e.g. via interpolation)
		 */
		return;
	}

	BufferSet& scratch_bufs (_session.get_scratch_buffers (bufs.count()));
	const bool still_locating = _session.global_locate_pending();

	if (c->empty()) {
		/* do nothing with audio */
		goto midi;
	}

	assert (speed == -1 || speed == 0 || speed == 1);

	if (speed < 0) {
		disk_samples_to_consume = -nframes;
	} else if (speed > 0) {
		disk_samples_to_consume = nframes;
	} else {
		disk_samples_to_consume = 0;
	}

	if (!result_required || ((ms & MonitoringDisk) == 0) || still_locating || _no_disk_output) {

		/* no need for actual disk data, just advance read pointer and return */

		if (!still_locating || _no_disk_output) {
			for (ChannelList::iterator chan = c->begin(); chan != c->end(); ++chan) {
				(*chan)->rbuf->increment_read_ptr (disk_samples_to_consume);
			}
		}

		/* if monitoring disk but locating put silence in the buffers */

		if ((_no_disk_output || still_locating) && (ms == MonitoringDisk)) {
			bufs.silence (nframes, 0);
		}

	} else {

		/* we need audio data from disk */

		size_t n_buffers = bufs.count().n_audio();
		size_t n_chans = c->size();
		gain_t scaling;

		if (n_chans > n_buffers) {
			scaling = ((float) n_buffers)/n_chans;
		} else {
			scaling = 1.0;
		}

		for (n = 0, chan = c->begin(); chan != c->end(); ++chan, ++n) {

			ChannelInfo* chaninfo (*chan);
			AudioBuffer& output (bufs.get_audio (n%n_buffers));
			Sample* disk_signal = 0; /* assignment not really needed but it keeps the compiler quiet and helps track bugs */

			if (ms & MonitoringInput) {
				/* put disk stream in scratch buffer, blend at end */
				disk_signal = scratch_bufs.get_audio(n).data ();
			} else {
				/* no input stream needed, just overwrite buffers */
				disk_signal = output.data ();
			}

			if (speed > 0) {
				if (start_sample < playback_sample) {
					cerr << owner()->name() << " SS = " << start_sample << " PS = " << playback_sample << endl;
					abort ();
				}
			} else if (speed < 0) {
				if (playback_sample < start_sample) {
					cerr << owner()->name() << " SS = " << start_sample << " PS = " << playback_sample << " REVERSE" << endl;
					abort ();
				}
			}

			if ((speed > 0) && (start_sample != playback_sample)) {
				cerr << owner()->name() << " playback not aligned, jump ahead " << (start_sample - playback_sample) << endl;

				if (can_internal_playback_seek (start_sample - playback_sample)) {
					internal_playback_seek (start_sample - playback_sample);
				} else {
					cerr << owner()->name() << " playback not possible: ss = " << start_sample << " ps = " << playback_sample << endl;
					goto midi;
				}
			}

			chaninfo->rbuf->get_read_vector (&(*chan)->rw_vector);

			if (disk_samples_to_consume <= (samplecnt_t) chaninfo->rw_vector.len[0]) {

				if (speed != 0.0) {
					memcpy (disk_signal, chaninfo->rw_vector.buf[0], sizeof (Sample) * disk_samples_to_consume);
				}

			} else {

				const samplecnt_t total = chaninfo->rw_vector.len[0] + chaninfo->rw_vector.len[1];

				if (disk_samples_to_consume <= total) {

						if (speed != 0.0) {
							memcpy (disk_signal,
						        chaninfo->rw_vector.buf[0],
						        chaninfo->rw_vector.len[0] * sizeof (Sample));
							memcpy (disk_signal + chaninfo->rw_vector.len[0],
						        chaninfo->rw_vector.buf[1],
						        (disk_samples_to_consume - chaninfo->rw_vector.len[0]) * sizeof (Sample));
					}

				} else {

					cerr << _name << " Need " << disk_samples_to_consume << " total = " << total << endl;
					cerr << "underrun for " << _name << endl;
					DEBUG_TRACE (DEBUG::Butler, string_compose ("%1 underrun in %2, total space = %3\n",
					                                            DEBUG_THREAD_SELF, name(), total));
					Underrun ();
					return;

				}
			}

			if (scaling != 1.0f && speed != 0.0) {
				apply_gain_to_buffer (disk_signal, disk_samples_to_consume, scaling);
			}

			chaninfo->rbuf->increment_read_ptr (disk_samples_to_consume);

			if (ms & MonitoringInput) {
				/* mix the disk signal into the input signal (already in bufs) */
				mix_buffers_no_gain (output.data(), disk_signal, disk_samples_to_consume);
			}
		}
	}

	/* MIDI data handling */

  midi:
	if (/*!_session.declick_out_pending() && */ bufs.count().n_midi()) {
		MidiBuffer* dst;

		if (_no_disk_output) {
			dst = &scratch_bufs.get_midi(0);
		} else {
			dst = &bufs.get_midi (0);
		}

		if ((ms & MonitoringDisk) && !still_locating) {
			get_midi_playback (*dst, start_sample, end_sample, ms, scratch_bufs, speed, disk_samples_to_consume);
		}
	}

	if (!still_locating) {

		bool butler_required = false;

		if (speed < 0.0) {
			playback_sample -= disk_samples_to_consume;
		} else {
			playback_sample += disk_samples_to_consume;
		}

		if (_playlists[DataType::AUDIO]) {
			if (!c->empty()) {
				if (_slaved) {
					if (c->front()->rbuf->write_space() >= c->front()->rbuf->bufsize() / 2) {
						DEBUG_TRACE (DEBUG::Butler, string_compose ("%1: slaved, write space = %2 of %3\n", name(), c->front()->rbuf->write_space(), c->front()->rbuf->bufsize()));
						butler_required = true;
					}
				} else {
					if ((samplecnt_t) c->front()->rbuf->write_space() >= _chunk_samples) {
						DEBUG_TRACE (DEBUG::Butler, string_compose ("%1: write space = %2 of %3\n", name(), c->front()->rbuf->write_space(),
						                                            _chunk_samples));
						butler_required = true;
					}
				}
			}
		}

		if (_playlists[DataType::MIDI]) {
			/* MIDI butler needed part */

			uint32_t samples_read = g_atomic_int_get(const_cast<gint*>(&_samples_read_from_ringbuffer));
			uint32_t samples_written = g_atomic_int_get(const_cast<gint*>(&_samples_written_to_ringbuffer));

			/*
			  cerr << name() << " MDS written: " << samples_written << " - read: " << samples_read <<
			  " = " << samples_written - samples_read
			  << " + " << disk_samples_to_consume << " < " << midi_readahead << " = " << need_butler << ")" << endl;
			*/

			/* samples_read will generally be less than samples_written, but
			 * immediately after an overwrite, we can end up having read some data
			 * before we've written any. we don't need to trip an assert() on this,
			 * but we do need to check so that the decision on whether or not we
			 * need the butler is done correctly.
			 */

			/* furthermore..
			 *
			 * Doing heavy GUI operations[1] can stall also the butler.
			 * The RT-thread meanwhile will happily continue and
			 * ‘samples_read’ (from buffer to output) will become larger
			 * than ‘samples_written’ (from disk to buffer).
			 *
			 * The disk-stream is now behind..
			 *
			 * In those cases the butler needs to be summed to refill the buffer (done now)
			 * AND we need to skip (samples_read - samples_written). ie remove old events
			 * before playback_sample from the rinbuffer.
			 *
			 * [1] one way to do so is described at #6170.
			 * For me just popping up the context-menu on a MIDI-track header
			 * of a track with a large (think beethoven :) midi-region also did the
			 * trick. The playhead stalls for 2 or 3 sec, until the context-menu shows.
			 *
			 * In both cases the root cause is that redrawing MIDI regions on the GUI is still very slow
			 * and can stall
			 */
			if (samples_read <= samples_written) {
				if ((samples_written - samples_read) + disk_samples_to_consume < midi_readahead) {
					butler_required = true;
				}
			} else {
				butler_required = true;
			}

		}

		_need_butler = butler_required;
	}

	// DEBUG_TRACE (DEBUG::Butler, string_compose ("%1 reader run, needs butler = %2\n", name(), _need_butler));
}

void
DiskReader::set_pending_overwrite (bool yn)
{
	/* called from audio thread, so we can use the read ptr and playback sample as we wish */

	_pending_overwrite = yn;

	overwrite_sample = playback_sample;

	boost::shared_ptr<ChannelList> c = channels.reader ();
	if (!c->empty ()) {
		overwrite_offset = c->front()->rbuf->get_read_ptr();
	}
}

int
DiskReader::overwrite_existing_buffers ()
{
	int ret = -1;

	boost::shared_ptr<ChannelList> c = channels.reader();

	overwrite_queued = false;

	DEBUG_TRACE (DEBUG::DiskIO, string_compose ("%1 overwriting existing buffers at %2\n", overwrite_sample));

	if (!c->empty ()) {

		/* AUDIO */

		const bool reversed = _session.transport_speed() < 0.0f;

		/* assume all are the same size */
		samplecnt_t size = c->front()->rbuf->bufsize();

		boost::scoped_array<Sample> mixdown_buffer (new Sample[size]);
		boost::scoped_array<float> gain_buffer (new float[size]);

		/* reduce size so that we can fill the buffer correctly (ringbuffers
		   can only handle size-1, otherwise they appear to be empty)
		*/
		size--;

		uint32_t n=0;
		samplepos_t start;

		for (ChannelList::iterator chan = c->begin(); chan != c->end(); ++chan, ++n) {

			start = overwrite_sample;
			samplecnt_t cnt = size;

			/* to fill the buffer without resetting the playback sample, we need to
			   do it one or two chunks (normally two).

			   |----------------------------------------------------------------------|

			   ^
			   overwrite_offset
			   |<- second chunk->||<----------------- first chunk ------------------>|

			*/

			samplecnt_t to_read = size - overwrite_offset;

			if (audio_read ((*chan)->rbuf->buffer() + overwrite_offset, mixdown_buffer.get(), gain_buffer.get(), start, to_read, n, reversed)) {
				error << string_compose(_("DiskReader %1: when refilling, cannot read %2 from playlist at sample %3"),
				                        id(), size, playback_sample) << endmsg;
				goto midi;
			}

			if (cnt > to_read) {

				cnt -= to_read;

				if (audio_read ((*chan)->rbuf->buffer(), mixdown_buffer.get(), gain_buffer.get(), start, cnt, n, reversed)) {
					error << string_compose(_("DiskReader %1: when refilling, cannot read %2 from playlist at sample %3"),
					                        id(), size, playback_sample) << endmsg;
					goto midi;
				}
			}
		}

		ret = 0;

	}

  midi:

	if (_midi_buf && _playlists[DataType::MIDI]) {

		/* Clear the playback buffer contents.  This is safe as long as the butler
		   thread is suspended, which it should be.
		*/
		_midi_buf->reset ();
		_midi_buf->reset_tracker ();

		g_atomic_int_set (&_samples_read_from_ringbuffer, 0);
		g_atomic_int_set (&_samples_written_to_ringbuffer, 0);

		/* Resolve all currently active notes in the playlist.  This is more
		   aggressive than it needs to be: ideally we would only resolve what is
		   absolutely necessary, but this seems difficult and/or impossible without
		   having the old data or knowing what change caused the overwrite.
		*/
		midi_playlist()->resolve_note_trackers (*_midi_buf, overwrite_sample);

		midi_read (overwrite_sample, _chunk_samples, false);
		file_sample[DataType::MIDI] = overwrite_sample; // overwrite_sample was adjusted by ::midi_read() to the new position
	}

	_pending_overwrite = false;

	return ret;
}

int
DiskReader::seek (samplepos_t sample, bool complete_refill)
{
	uint32_t n;
	int ret = -1;
	ChannelList::iterator chan;
	boost::shared_ptr<ChannelList> c = channels.reader();

	//sample = std::max ((samplecnt_t)0, sample -_session.worst_output_latency ());

	for (n = 0, chan = c->begin(); chan != c->end(); ++chan, ++n) {
		(*chan)->rbuf->reset ();
	}

	if (g_atomic_int_get (&_samples_read_from_ringbuffer) == 0) {
		/* we haven't read anything since the last seek,
		   so flush all note trackers to prevent
		   wierdness
		*/
		reset_tracker ();
	}

	_midi_buf->reset();
	g_atomic_int_set(&_samples_read_from_ringbuffer, 0);
	g_atomic_int_set(&_samples_written_to_ringbuffer, 0);

	playback_sample = sample;
	file_sample[DataType::AUDIO] = sample;
	file_sample[DataType::MIDI] = sample;

	if (complete_refill) {
		/* call _do_refill() to refill the entire buffer, using
		   the largest reads possible.
		*/
		while ((ret = do_refill_with_alloc (false)) > 0) ;
	} else {
		/* call _do_refill() to refill just one chunk, and then
		   return.
		*/
		ret = do_refill_with_alloc (true);
	}


	return ret;
}

int
DiskReader::can_internal_playback_seek (samplecnt_t distance)
{
	/* 1. Audio */

	ChannelList::iterator chan;
	boost::shared_ptr<ChannelList> c = channels.reader();

	for (chan = c->begin(); chan != c->end(); ++chan) {
		if ((*chan)->rbuf->read_space() < (size_t) distance) {
			return false;
		}
	}

	/* 2. MIDI */

	uint32_t samples_read    = g_atomic_int_get(&_samples_read_from_ringbuffer);
	uint32_t samples_written = g_atomic_int_get(&_samples_written_to_ringbuffer);

	return ((samples_written - samples_read) < distance);
}

int
DiskReader::internal_playback_seek (samplecnt_t distance)
{
	ChannelList::iterator chan;
	boost::shared_ptr<ChannelList> c = channels.reader();

	for (chan = c->begin(); chan != c->end(); ++chan) {
		(*chan)->rbuf->increment_read_ptr (::llabs(distance));
	}

	playback_sample += distance;

	return 0;
}

static
void swap_by_ptr (Sample *first, Sample *last)
{
	while (first < last) {
		Sample tmp = *first;
		*first++ = *last;
		*last-- = tmp;
	}
}

/** Read some data for 1 channel from our playlist into a buffer.
 *  @param buf Buffer to write to.
 *  @param start Session sample to start reading from; updated to where we end up
 *         after the read.
 *  @param cnt Count of samples to read.
 *  @param reversed true if we are running backwards, otherwise false.
 */
int
DiskReader::audio_read (Sample* buf, Sample* mixdown_buffer, float* gain_buffer,
                        samplepos_t& start, samplecnt_t cnt,
                        int channel, bool reversed)
{
	samplecnt_t this_read = 0;
	bool reloop = false;
	samplepos_t loop_end = 0;
	samplepos_t loop_start = 0;
	samplecnt_t offset = 0;
	Location *loc = 0;

	if (!_playlists[DataType::AUDIO]) {
		memset (buf, 0, sizeof (Sample) * cnt);
		return 0;
	}

	/* XXX we don't currently play loops in reverse. not sure why */

	if (!reversed) {

		samplecnt_t loop_length = 0;

		/* Make the use of a Location atomic for this read operation.

		   Note: Locations don't get deleted, so all we care about
		   when I say "atomic" is that we are always pointing to
		   the same one and using a start/length values obtained
		   just once.
		*/

		if ((loc = _loop_location) != 0) {
			loop_start = loc->start();
			loop_end = loc->end();
			loop_length = loop_end - loop_start;
		}

		/* if we are looping, ensure that the first sample we read is at the correct
		   position within the loop.
		*/

		if (loc && start >= loop_end) {
			start = loop_start + ((start - loop_start) % loop_length);
		}

	}

	if (reversed) {
		start -= cnt;
	}

	/* We need this while loop in case we hit a loop boundary, in which case our read from
	   the playlist must be split into more than one section.
	*/

	while (cnt) {

		/* take any loop into account. we can't read past the end of the loop. */

		if (loc && (loop_end - start < cnt)) {
			this_read = loop_end - start;
			reloop = true;
		} else {
			reloop = false;
			this_read = cnt;
		}

		if (this_read == 0) {
			break;
		}

		this_read = min(cnt,this_read);

		if (audio_playlist()->read (buf+offset, mixdown_buffer, gain_buffer, start, this_read, channel) != this_read) {
			error << string_compose(_("DiskReader %1: cannot read %2 from playlist at sample %3"), id(), this_read,
					 start) << endmsg;
			return -1;
		}

		if (reversed) {

			swap_by_ptr (buf, buf + this_read - 1);

		} else {

			/* if we read to the end of the loop, go back to the beginning */

			if (reloop) {
				start = loop_start;
			} else {
				start += this_read;
			}
		}

		cnt -= this_read;
		offset += this_read;
	}

	return 0;
}

int
DiskReader::_do_refill_with_alloc (bool partial_fill)
{
	/* We limit disk reads to at most 4MB chunks, which with floating point
	   samples would be 1M samples. But we might use 16 or 14 bit samples,
	   in which case 4MB is more samples than that. Therefore size this for
	   the smallest sample value .. 4MB = 2M samples (16 bit).
	*/

	{
		boost::scoped_array<Sample> mix_buf (new Sample[2*1048576]);
		boost::scoped_array<float>  gain_buf (new float[2*1048576]);

		int ret = refill_audio (mix_buf.get(), gain_buf.get(), (partial_fill ? _chunk_samples : 0));

		if (ret) {
			return ret;
		}
	}

	return refill_midi ();
}

int
DiskReader::refill (Sample* mixdown_buffer, float* gain_buffer, samplecnt_t fill_level)
{
	int ret = refill_audio (mixdown_buffer, gain_buffer, fill_level);

	if (ret) {
		return ret;
	}

	return refill_midi ();
}


/** Get some more data from disk and put it in our channels' bufs,
 *  if there is suitable space in them.
 *
 * If fill_level is non-zero, then we will refill the buffer so that there is
 * still at least fill_level samples of space left to be filled. This is used
 * after locates so that we do not need to wait to fill the entire buffer.
 *
 */

int
DiskReader::refill_audio (Sample* mixdown_buffer, float* gain_buffer, samplecnt_t fill_level)
{
	/* do not read from disk while session is marked as Loading, to avoid
	   useless redundant I/O.
	*/

	if (_session.loading()) {
		return 0;
	}

	int32_t ret = 0;
	samplecnt_t to_read;
	RingBufferNPT<Sample>::rw_vector vector;
	bool const reversed = _session.transport_speed() < 0.0f;
	samplecnt_t total_space;
	samplecnt_t zero_fill;
	uint32_t chan_n;
	ChannelList::iterator i;
	boost::shared_ptr<ChannelList> c = channels.reader();
	samplecnt_t ts;

	if (c->empty()) {
		return 0;
	}

	assert(mixdown_buffer);
	assert(gain_buffer);

	vector.buf[0] = 0;
	vector.len[0] = 0;
	vector.buf[1] = 0;
	vector.len[1] = 0;

	c->front()->rbuf->get_write_vector (&vector);

	if ((total_space = vector.len[0] + vector.len[1]) == 0) {
		DEBUG_TRACE (DEBUG::DiskIO, string_compose ("%1: no space to refill\n", name()));
		/* nowhere to write to */
		return 0;
	}

	if (fill_level) {
		if (fill_level < total_space) {
			total_space -= fill_level;
		} else {
			/* we can't do anything with it */
			fill_level = 0;
		}
	}

	/* if we're running close to normal speed and there isn't enough
	   space to do disk_read_chunk_samples of I/O, then don't bother.

	   at higher speeds, just do it because the sync between butler
	   and audio thread may not be good enough.

	   Note: it is a design assumption that disk_read_chunk_samples is smaller
	   than the playback buffer size, so this check should never trip when
	   the playback buffer is empty.
	*/

	DEBUG_TRACE (DEBUG::DiskIO, string_compose ("%1: space to refill %2 vs. chunk %3 (speed = %4)\n", name(), total_space, _chunk_samples, _session.transport_speed()));
	if ((total_space < _chunk_samples) && fabs (_session.transport_speed()) < 2.0f) {
		return 0;
	}

	/* when slaved, don't try to get too close to the read pointer. this
	   leaves space for the buffer reversal to have something useful to
	   work with.
	*/

	if (_slaved && total_space < (samplecnt_t) (c->front()->rbuf->bufsize() / 2)) {
		DEBUG_TRACE (DEBUG::DiskIO, string_compose ("%1: not enough to refill while slaved\n", this));
		return 0;
	}

	samplepos_t ffa = file_sample[DataType::AUDIO];

	if (reversed) {

		if (ffa == 0) {

			/* at start: nothing to do but fill with silence */

			for (chan_n = 0, i = c->begin(); i != c->end(); ++i, ++chan_n) {

				ChannelInfo* chan (*i);
				chan->rbuf->get_write_vector (&vector);
				memset (vector.buf[0], 0, sizeof(Sample) * vector.len[0]);
				if (vector.len[1]) {
					memset (vector.buf[1], 0, sizeof(Sample) * vector.len[1]);
				}
				chan->rbuf->increment_write_ptr (vector.len[0] + vector.len[1]);
			}
			return 0;
		}

		if (ffa < total_space) {

			/* too close to the start: read what we can,
			   and then zero fill the rest
			*/

			zero_fill = total_space - ffa;
			total_space = ffa;

		} else {

			zero_fill = 0;
		}

	} else {

		if (ffa == max_samplepos) {

			/* at end: nothing to do but fill with silence */

			for (chan_n = 0, i = c->begin(); i != c->end(); ++i, ++chan_n) {

				ChannelInfo* chan (*i);
				chan->rbuf->get_write_vector (&vector);
				memset (vector.buf[0], 0, sizeof(Sample) * vector.len[0]);
				if (vector.len[1]) {
					memset (vector.buf[1], 0, sizeof(Sample) * vector.len[1]);
				}
				chan->rbuf->increment_write_ptr (vector.len[0] + vector.len[1]);
			}
			return 0;
		}

		if (ffa > max_samplepos - total_space) {

			/* to close to the end: read what we can, and zero fill the rest */

			zero_fill = total_space - (max_samplepos - ffa);
			total_space = max_samplepos - ffa;

		} else {
			zero_fill = 0;
		}
	}

	samplepos_t file_sample_tmp = 0;

	/* total_space is in samples. We want to optimize read sizes in various sizes using bytes */

	const size_t bits_per_sample = format_data_width (_session.config.get_native_file_data_format());
	size_t total_bytes = total_space * bits_per_sample / 8;

	/* chunk size range is 256kB to 4MB. Bigger is faster in terms of MB/sec, but bigger chunk size always takes longer
	 */
	size_t byte_size_for_read = max ((size_t) (256 * 1024), min ((size_t) (4 * 1048576), total_bytes));

	/* find nearest (lower) multiple of 16384 */

	byte_size_for_read = (byte_size_for_read / 16384) * 16384;

	/* now back to samples */

	samplecnt_t samples_to_read = byte_size_for_read / (bits_per_sample / 8);

	DEBUG_TRACE (DEBUG::DiskIO, string_compose ("%1: will refill %2 channels with %3 samples\n", name(), c->size(), total_space));

	// uint64_t before = g_get_monotonic_time ();
	// uint64_t elapsed;

	for (chan_n = 0, i = c->begin(); i != c->end(); ++i, ++chan_n) {

		ChannelInfo* chan (*i);
		Sample* buf1;
		Sample* buf2;
		samplecnt_t len1, len2;

		chan->rbuf->get_write_vector (&vector);

		if ((samplecnt_t) vector.len[0] > samples_to_read) {

			/* we're not going to fill the first chunk, so certainly do not bother with the
			   other part. it won't be connected with the part we do fill, as in:

			   .... => writable space
			   ++++ => readable space
			   ^^^^ => 1 x disk_read_chunk_samples that would be filled

			   |......|+++++++++++++|...............................|
			   buf1                buf0
			                        ^^^^^^^^^^^^^^^


			   So, just pretend that the buf1 part isn't there.

			*/

			vector.buf[1] = 0;
			vector.len[1] = 0;

		}

		ts = total_space;
		file_sample_tmp = ffa;

		buf1 = vector.buf[0];
		len1 = vector.len[0];
		buf2 = vector.buf[1];
		len2 = vector.len[1];

		to_read = min (ts, len1);
		to_read = min (to_read, (samplecnt_t) samples_to_read);

		assert (to_read >= 0);

		if (to_read) {

			if (audio_read (buf1, mixdown_buffer, gain_buffer, file_sample_tmp, to_read, chan_n, reversed)) {
				ret = -1;
				goto out;
			}
			chan->rbuf->increment_write_ptr (to_read);
			ts -= to_read;
		}

		to_read = min (ts, len2);

		if (to_read) {

			/* we read all of vector.len[0], but it wasn't the
			   entire samples_to_read of data, so read some or
			   all of vector.len[1] as well.
			*/

			if (audio_read (buf2, mixdown_buffer, gain_buffer, file_sample_tmp, to_read, chan_n, reversed)) {
				ret = -1;
				goto out;
			}

			chan->rbuf->increment_write_ptr (to_read);
		}

		if (zero_fill) {
			/* XXX: do something */
		}

	}

	// elapsed = g_get_monotonic_time () - before;
	// cerr << '\t' << name() << ": bandwidth = " << (byte_size_for_read / 1048576.0) / (elapsed/1000000.0) << "MB/sec\n";

	file_sample[DataType::AUDIO] = file_sample_tmp;
	assert (file_sample[DataType::AUDIO] >= 0);

	ret = ((total_space - samples_to_read) > _chunk_samples);

	c->front()->rbuf->get_write_vector (&vector);

  out:
	return ret;
}

void
DiskReader::playlist_ranges_moved (list< Evoral::RangeMove<samplepos_t> > const & movements_samples, bool from_undo)
{
	/* If we're coming from an undo, it will have handled
	   automation undo (it must, since automation-follows-regions
	   can lose automation data).  Hence we can do nothing here.
	*/

	if (from_undo) {
		return;
	}

	if (!_route || Config->get_automation_follows_regions () == false) {
		return;
	}

	list< Evoral::RangeMove<double> > movements;

	for (list< Evoral::RangeMove<samplepos_t> >::const_iterator i = movements_samples.begin();
	     i != movements_samples.end();
	     ++i) {

		movements.push_back(Evoral::RangeMove<double>(i->from, i->length, i->to));
	}

	/* move panner automation */
	boost::shared_ptr<Pannable> pannable = _route->pannable();
        Evoral::ControlSet::Controls& c (pannable->controls());

        for (Evoral::ControlSet::Controls::iterator ci = c.begin(); ci != c.end(); ++ci) {
                boost::shared_ptr<AutomationControl> ac = boost::dynamic_pointer_cast<AutomationControl>(ci->second);
                if (!ac) {
                        continue;
                }
                boost::shared_ptr<AutomationList> alist = ac->alist();
		if (!alist->size()) {
			continue;
		}
                XMLNode & before = alist->get_state ();
                bool const things_moved = alist->move_ranges (movements);
                if (things_moved) {
                        _session.add_command (new MementoCommand<AutomationList> (
                                                      *alist.get(), &before, &alist->get_state ()));
                }
        }
	/* move processor automation */
        _route->foreach_processor (boost::bind (&DiskReader::move_processor_automation, this, _1, movements_samples));
}

void
DiskReader::move_processor_automation (boost::weak_ptr<Processor> p, list< Evoral::RangeMove<samplepos_t> > const & movements_samples)
{
	boost::shared_ptr<Processor> processor (p.lock ());
	if (!processor) {
		return;
	}

	list< Evoral::RangeMove<double> > movements;
	for (list< Evoral::RangeMove<samplepos_t> >::const_iterator i = movements_samples.begin(); i != movements_samples.end(); ++i) {
		movements.push_back(Evoral::RangeMove<double>(i->from, i->length, i->to));
	}

	set<Evoral::Parameter> const a = processor->what_can_be_automated ();

	for (set<Evoral::Parameter>::const_iterator i = a.begin (); i != a.end (); ++i) {
		boost::shared_ptr<AutomationList> al = processor->automation_control(*i)->alist();
		if (!al->size()) {
			continue;
		}
		XMLNode & before = al->get_state ();
		bool const things_moved = al->move_ranges (movements);
		if (things_moved) {
			_session.add_command (
				new MementoCommand<AutomationList> (
					*al.get(), &before, &al->get_state ()
					)
				);
		}
	}
}

void
DiskReader::reset_tracker ()
{
	_midi_buf->reset_tracker ();

	boost::shared_ptr<MidiPlaylist> mp (midi_playlist());

	if (mp) {
		mp->reset_note_trackers ();
	}
}

void
DiskReader::resolve_tracker (Evoral::EventSink<samplepos_t>& buffer, samplepos_t time)
{
	_midi_buf->resolve_tracker(buffer, time);

	boost::shared_ptr<MidiPlaylist> mp (midi_playlist());

	if (mp) {
		mp->reset_note_trackers ();
	}
}

/** Writes playback events from playback_sample for nframes to dst, translating time stamps
 *  so that an event at playback_sample has time = 0
 */
void
DiskReader::get_midi_playback (MidiBuffer& dst, samplepos_t start_sample, samplepos_t end_sample, MonitorState ms, BufferSet& scratch_bufs, double speed, samplecnt_t disk_samples_to_consume)
{
	MidiBuffer* target;
	samplepos_t nframes = end_sample - start_sample;

	if ((ms & MonitoringInput) == 0) {
		/* Route::process_output_buffers() clears the buffer as-needed */
		target = &dst;
	} else {
		target = &scratch_bufs.get_midi (0);
	}

	if (ms & MonitoringDisk) {
		/* disk data needed */

		Location* loc = _loop_location;

		DEBUG_TRACE (DEBUG::MidiDiskstreamIO, string_compose (
			             "%1 MDS pre-read read %8 offset = %9 @ %4..%5 from %2 write to %3, LOOPED ? %6 .. %7\n", _name,
			             _midi_buf->get_read_ptr(), _midi_buf->get_write_ptr(), start_sample, end_sample,
			             (loc ? loc->start() : -1), (loc ? loc->end() : -1), nframes, Port::port_offset()));

		//cerr << "======== PRE ========\n";
		//_midi_buf->dump (cerr);
		//cerr << "----------------\n";

		size_t events_read = 0;

		if (loc) {
			samplepos_t effective_start;

			Evoral::Range<samplepos_t> loop_range (loc->start(), loc->end() - 1);
			effective_start = loop_range.squish (start_sample);

			DEBUG_TRACE (DEBUG::MidiDiskstreamIO, string_compose ("looped, effective start adjusted to %1\n", effective_start));

			if (effective_start == loc->start()) {
				/* We need to turn off notes that may extend
				   beyond the loop end.
				*/

				_midi_buf->resolve_tracker (*target, 0);
			}

			/* for split-cycles we need to offset the events */

			if (loc->end() >= effective_start && loc->end() < effective_start + nframes) {

				/* end of loop is within the range we are reading, so
				   split the read in two, and lie about the location
				   for the 2nd read
				*/

				samplecnt_t first, second;

				first = loc->end() - effective_start;
				second = nframes - first;

				DEBUG_TRACE (DEBUG::MidiDiskstreamIO, string_compose ("loop read for eff %1 end %2: %3 and %4, cycle offset %5\n",
				                                                      effective_start, loc->end(), first, second));

				if (first) {
					DEBUG_TRACE (DEBUG::MidiDiskstreamIO, string_compose ("loop read #1, from %1 for %2\n",
					                                                      effective_start, first));
					events_read = _midi_buf->read (*target, effective_start, first);
				}

				if (second) {
					DEBUG_TRACE (DEBUG::MidiDiskstreamIO, string_compose ("loop read #2, from %1 for %2\n",
					                                                      loc->start(), second));
					events_read += _midi_buf->read (*target, loc->start(), second);
				}

			} else {
				DEBUG_TRACE (DEBUG::MidiDiskstreamIO, string_compose ("loop read #3, adjusted start as %1 for %2\n",
				                                                      effective_start, nframes));
				events_read = _midi_buf->read (*target, effective_start, effective_start + nframes);
			}
		} else {
			const size_t n_skipped = _midi_buf->skip_to (start_sample);
			if (n_skipped > 0) {
				warning << string_compose(_("MidiDiskstream %1: skipped %2 events, possible underflow"), id(), n_skipped) << endmsg;
			}
			DEBUG_TRACE (DEBUG::MidiDiskstreamIO, string_compose ("playback buffer read, from %1 to %2 (%3)", start_sample, end_sample, nframes));
			events_read = _midi_buf->read (*target, start_sample, end_sample, Port::port_offset ());
		}

		DEBUG_TRACE (DEBUG::MidiDiskstreamIO, string_compose (
			             "%1 MDS events read %2 range %3 .. %4 rspace %5 wspace %6 r@%7 w@%8\n",
			             _name, events_read, playback_sample, playback_sample + nframes,
			             _midi_buf->read_space(), _midi_buf->write_space(),
			             _midi_buf->get_read_ptr(), _midi_buf->get_write_ptr()));
	}

	g_atomic_int_add (&_samples_read_from_ringbuffer, nframes);

	/* vari-speed */
	if (speed != 0.0 && fabsf (speed) != 1.0f) {
		for (MidiBuffer::iterator i = target->begin(); i != target->end(); ++i) {
			MidiBuffer::TimeType *tme = i.timeptr();
			// XXX need to subtract port offsets before scaling
			// also we must only scale events read from disk
			// and not existing input data in the buffer.
			*tme = (*tme) * nframes / disk_samples_to_consume;
		}
	}

	if (ms & MonitoringInput) {
		dst.merge_from (*target, nframes);
	}

#if 0
	if (!target->empty ()) {
		cerr << "======== MIDI OUT ========\n";
		for (MidiBuffer::iterator i = target->begin(); i != target->end(); ++i) {
			const Evoral::Event<MidiBuffer::TimeType> ev (*i, false);
			cerr << "MIDI EVENT (from disk) @ " << ev.time();
			for (size_t xx = 0; xx < ev.size(); ++xx) {
				cerr << ' ' << hex << (int) ev.buffer()[xx];
			}
			cerr << dec << endl;
		}
		cerr << "----------------\n";
	}
#endif
#if 0
	cerr << "======== MIDI Disk Buffer ========\n";
	_midi_buf->dump (cerr);
	cerr << "----------------\n";
#endif
}

/** @a start is set to the new sample position (TIME) read up to */
int
DiskReader::midi_read (samplepos_t& start, samplecnt_t dur, bool reversed)
{
	samplecnt_t this_read   = 0;
	samplepos_t loop_end    = 0;
	samplepos_t loop_start  = 0;
	samplecnt_t loop_length = 0;
	Location*  loc         = _loop_location;
	samplepos_t effective_start = start;
	Evoral::Range<samplepos_t>*  loop_range (0);

	DEBUG_TRACE (DEBUG::MidiDiskstreamIO, string_compose ("MDS::midi_read @ %1 cnt %2\n", start, dur));

	boost::shared_ptr<MidiTrack> mt = boost::dynamic_pointer_cast<MidiTrack>(_route);
	MidiChannelFilter* filter = mt ? &mt->playback_filter() : 0;
	sampleoffset_t loop_offset = 0;

	if (!reversed && loc) {
		get_location_times (loc, &loop_start, &loop_end, &loop_length);
	}

	while (dur) {

		/* take any loop into account. we can't read past the end of the loop. */

		if (loc && !reversed) {

			if (!loop_range) {
				loop_range = new Evoral::Range<samplepos_t> (loop_start, loop_end-1); // inclusive semantics require -1
			}

			/* if we are (seamlessly) looping, ensure that the first sample we read is at the correct
			   position within the loop.
			*/

			effective_start = loop_range->squish (effective_start);

			if ((loop_end - effective_start) <= dur) {
				/* too close to end of loop to read "dur", so
				   shorten it.
				*/
				this_read = loop_end - effective_start;
			} else {
				this_read = dur;
			}

		} else {
			this_read = dur;
		}

		if (this_read == 0) {
			break;
		}

		this_read = min (dur,this_read);

		DEBUG_TRACE (DEBUG::MidiDiskstreamIO, string_compose ("MDS ::read at %1 for %2 loffset %3\n", effective_start, this_read, loop_offset));

		if (midi_playlist()->read (*_midi_buf, effective_start, this_read, loop_range, 0, filter) != this_read) {
			error << string_compose(
					_("MidiDiskstream %1: cannot read %2 from playlist at sample %3"),
					id(), this_read, start) << endmsg;
			return -1;
		}

		g_atomic_int_add (&_samples_written_to_ringbuffer, this_read);

		if (reversed) {

			// Swap note ons with note offs here.  etc?
			// Fully reversing MIDI requires look-ahead (well, behind) to find previous
			// CC values etc.  hard.

		} else {

			/* adjust passed-by-reference argument (note: this is
			   monotonic and does not reflect looping.
			*/
			start += this_read;

			/* similarly adjust effective_start, but this may be
			   readjusted for seamless looping as we continue around
			   the loop.
			*/
			effective_start += this_read;
		}

		dur -= this_read;
	}

	return 0;
}

int
DiskReader::refill_midi ()
{
	if (!_playlists[DataType::MIDI]) {
		return 0;
	}

	const size_t  write_space = _midi_buf->write_space();
	const bool reversed    = _session.transport_speed() < 0.0f;

	DEBUG_TRACE (DEBUG::DiskIO, string_compose ("MIDI refill, write space = %1 file sample = %2\n", write_space, file_sample[DataType::MIDI]));

	/* no space to write */
	if (write_space == 0) {
		return 0;
	}

	if (reversed) {
		return 0;
	}

	/* at end: nothing to do */

	samplepos_t ffm = file_sample[DataType::MIDI];

	if (ffm == max_samplepos) {
		return 0;
	}

	int ret = 0;
	const uint32_t samples_read = g_atomic_int_get (&_samples_read_from_ringbuffer);
	const uint32_t samples_written = g_atomic_int_get (&_samples_written_to_ringbuffer);

	if ((samples_read < samples_written) && (samples_written - samples_read) >= midi_readahead) {
		return 0;
	}

	samplecnt_t to_read = midi_readahead - ((samplecnt_t)samples_written - (samplecnt_t)samples_read);

	to_read = min (to_read, (samplecnt_t) (max_samplepos - ffm));
	to_read = min (to_read, (samplecnt_t) write_space);

	if (midi_read (ffm, to_read, reversed)) {
		ret = -1;
	}

	file_sample[DataType::MIDI] = ffm;

	return ret;
}

void
DiskReader::set_no_disk_output (bool yn)
{
	/* this MUST be called as part of the process call tree, before any
	   disk readers are invoked. We use it when the session needs the
	   transport (and thus effective read position for DiskReaders) to keep
	   advancing as part of syncing up with a transport master, but we
	   don't want any actual disk output yet because we are still not
	   synced.
	*/
	_no_disk_output = yn;
}