summaryrefslogtreecommitdiff
path: root/libs/ardour/ardour/interpolation.h
blob: 6ceb63e527ab91458d5d527b86af1d74ba980a37 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
#include <math.h>
#include <samplerate.h>

#include "ardour/types.h"

#ifndef __interpolation_h__
#define __interpolation_h__

namespace ARDOUR {

class Interpolation {
 protected:
     double   _speed, _target_speed;

     // the idea is that when the speed is not 1.0, we have to 
     // interpolate between samples and then we have to store where we thought we were. 
     // rather than being at sample N or N+1, we were at N+0.8792922
     std::vector<double> phase;

             
 public:
     Interpolation () { _speed = 1.0; _target_speed = 1.0; }
 
     void set_speed (double new_speed)          { _speed = new_speed; _target_speed = new_speed; }
     void set_target_speed (double new_speed)   { _target_speed = new_speed; }

     double target_speed()          const { return _target_speed; }
     double speed()                 const { return _speed; }
     
     void add_channel_to (int input_buffer_size, int output_buffer_size) { phase.push_back (0.0); }
     void remove_channel_from () { phase.pop_back (); }

     void reset () {
         for (size_t i = 0; i <= phase.size(); i++) {
              phase[i] = 0.0;
          }
     }
};

// 40.24 fixpoint math
#define FIXPOINT_ONE 0x1000000

class FixedPointLinearInterpolation : public Interpolation {
    protected:
    /// speed in fixed point math
    uint64_t      phi;
    
    /// target speed in fixed point math
    uint64_t      target_phi;
    
    std::vector<uint64_t> last_phase;

    // Fixed point is just an integer with an implied scaling factor. 
    // In 40.24 the scaling factor is 2^24 = 16777216,  
    // so a value of 10*2^24 (in integer space) is equivalent to 10.0. 
    //
    // The advantage is that addition and modulus [like x = (x + y) % 2^40]  
    // have no rounding errors and no drift, and just require a single integer add.
    // (swh)
    
    static const int64_t fractional_part_mask  = 0xFFFFFF;
    static const Sample  binary_scaling_factor = 16777216.0f;
    
    public:
        
        FixedPointLinearInterpolation () : phi (FIXPOINT_ONE), target_phi (FIXPOINT_ONE) {}
    
        void set_speed (double new_speed) {
            target_phi = (uint64_t) (FIXPOINT_ONE * fabs(new_speed));
            phi = target_phi;
        }
        
        uint64_t get_phi() { return phi; }
        uint64_t get_target_phi() { return target_phi; }
        uint64_t get_last_phase() { assert(last_phase.size()); return last_phase[0]; }
        void set_last_phase(uint64_t phase) { assert(last_phase.size()); last_phase[0] = phase; }
        
        void add_channel_to (int input_buffer_size, int output_buffer_size);
        void remove_channel_from ();
         
        nframes_t interpolate (int channel, nframes_t nframes, Sample* input, Sample* output);
        void reset ();
};

class LinearInterpolation : public Interpolation {
 protected:
    
 public:
     nframes_t interpolate (int channel, nframes_t nframes, Sample* input, Sample* output);
};
 

#define MAX_PERIOD_SIZE 4096
/**
 * @class SplineInterpolation
 * 
 * @brief interpolates using cubic spline interpolation over an input period
 * 
 * Splines are piecewise cubic functions between each samples,
 * where the cubic polynomials' values, first and second derivatives are equal
 * on each sample point.
 * 
 * Those conditions are equivalent of solving the linear system of equations
 * defined by the matrix equation (all indices are zero-based):
 *  A * M = d
 *
 * where A has (n-2) rows and (n-2) columns
 *
 *  [ 4 1 0 0 ... 0 0 0 0 ]   [ M[1]   ]   [ 6*y[0] - 12*y[1] + 6*y[2] ]
 *  [ 1 4 1 0 ... 0 0 0 0 ]   [ M[2]   ]   [ 6*y[1] - 12*y[2] + 6*y[3] ]
 *  [ 0 1 4 1 ... 0 0 0 0 ]   [ M[3]   ]   [ 6*y[2] - 12*y[3] + 6*y[4] ]
 *  [ 0 0 1 4 ... 0 0 0 0 ]   [ M[4]   ]   [ 6*y[3] - 12*y[4] + 6*y[5] ]
 *            ...           *            =            ...            
 *  [ 0 0 0 0 ... 4 1 0 0 ]   [ M[n-5] ]   [ 6*y[n-6]- 12*y[n-5] + 6*y[n-4] ]
 *  [ 0 0 0 0 ... 1 4 1 0 ]   [ M[n-4] ]   [ 6*y[n-5]- 12*y[n-4] + 6*y[n-3] ]
 *  [ 0 0 0 0 ... 0 1 4 1 ]   [ M[n-3] ]   [ 6*y[n-4]- 12*y[n-3] + 6*y[n-2] ]
 *  [ 0 0 0 0 ... 0 0 1 4 ]   [ M[n-2] ]   [ 6*y[n-3]- 12*y[n-2] + 6*y[n-1] ]
 *
 *  For our purpose we use natural splines which means the boundary coefficients
 *  M[0] = M[n-1] = 0
 *
 *  The interpolation polynomial in the i-th interval then has the form
 *  p_i(x) = a3 (x - i)^3 + a2 (x - i)^2 + a1 (x - i) + a0
 *         = ((a3 * (x - i) + a2) * (x - i) + a1) * (x - i) + a0
 *     where
 *  a3 = (M[i+1] - M[i]) / 6
 *  a2 = M[i] / 2 
 *  a1 = y[i+1] - y[i] - M[i+1]/6 - M[i]/3
 *  a0 = y[i] 
 *
 *  We solve the system by LU-factoring the matrix A:
 *  A = L * U:
 *
 *  [ 4 1 0 0 ... 0 0 0 0 ]   [ 1    0    0    0   ... 0      0      0      0 ]   [ m[0] 1    0    0   ... 0      0      0      ]
 *  [ 1 4 1 0 ... 0 0 0 0 ]   [ l[0] 1    0    0   ... 0      0      0      0 ]   [ 0    m[1] 1    0   ... 0      0      0      ]
 *  [ 0 1 4 1 ... 0 0 0 0 ]   [ 0    l[1] 1    0   ... 0      0      0      0 ]   [ 0    0    m[2] 1   ... 0      0      0      ]
 *  [ 0 0 1 4 ... 0 0 0 0 ]   [ 0    0    l[2] 1   ... 0      0      0      0 ]                        ...                
 *            ...           =                     ...                          *  [ 0    0    0    0   ... 0      0      0      ]
 *  [ 0 0 0 0 ... 4 1 0 0 ]   [ 0    0    0    0   ... 1      0      0      0 ]   [ 0    0    0    0   ... 1      0      0      ]
 *  [ 0 0 0 0 ... 1 4 1 0 ]   [ 0    0    0    0   ... l[n-6] 1      0      0 ]   [ 0    0    0    0   ... m[n-5] 1      0      ]
 *  [ 0 0 0 0 ... 0 1 4 1 ]   [ 0    0    0    0   ... 0      l[n-5] 1      0 ]   [ 0    0    0    0   ... 0      m[n-4] 1      ]
 *  [ 0 0 0 0 ... 0 0 1 4 ]   [ 0    0    0    0   ... 0      0      l[n-4] 1 ]   [ 0    0    0    0   ... 0      0      m[n-3] ]
 *
 *  where the l[i] and m[i] can be precomputed.
 * 
 *  Then we solve the system A * M = d by first solving the system
 *    L * t = d 
 *  and then
 *    R * M = t
 */
class SplineInterpolation : public Interpolation {
 protected:
    double l[MAX_PERIOD_SIZE], m[MAX_PERIOD_SIZE];
    
 public:
    SplineInterpolation();
    nframes_t interpolate (int channel, nframes_t nframes, Sample* input, Sample* output);
};

class LibSamplerateInterpolation : public Interpolation {
 protected:
    std::vector<SRC_STATE*>  state;
    std::vector<SRC_DATA*>   data;
    
    int        error;
    
    void reset_state ();
    
 public:
        LibSamplerateInterpolation ();
        ~LibSamplerateInterpolation ();
    
        void   set_speed (double new_speed);
        void   set_target_speed (double new_speed)   {}
        double speed ()                        const { return _speed;      }
        
        void add_channel_to (int input_buffer_size, int output_buffer_size);
        void remove_channel_from (); 
 
        nframes_t interpolate (int channel, nframes_t nframes, Sample* input, Sample* output);
        void reset() { reset_state (); }
};

} // namespace ARDOUR

#endif