/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ /* QM DSP Library Centre for Digital Music, Queen Mary, University of London. This file is based on Don Cross's public domain FFT implementation. */ #include "FFT.h" #include "maths/MathUtilities.h" #include #include FFT::FFT(unsigned int n) : m_n(n), m_private(0) { if( !MathUtilities::isPowerOfTwo(m_n) ) { std::cerr << "ERROR: FFT: Non-power-of-two FFT size " << m_n << " not supported in this implementation" << std::endl; return; } } FFT::~FFT() { } FFTReal::FFTReal(unsigned int n) : m_n(n), m_private_real(0) { m_private_real = new FFT(m_n); } FFTReal::~FFTReal() { delete (FFT *)m_private_real; } void FFTReal::process(bool inverse, const double *realIn, double *realOut, double *imagOut) { ((FFT *)m_private_real)->process(inverse, realIn, 0, realOut, imagOut); } static unsigned int numberOfBitsNeeded(unsigned int p_nSamples) { int i; if( p_nSamples < 2 ) { return 0; } for ( i=0; ; i++ ) { if( p_nSamples & (1 << i) ) return i; } } static unsigned int reverseBits(unsigned int p_nIndex, unsigned int p_nBits) { unsigned int i, rev; for(i=rev=0; i < p_nBits; i++) { rev = (rev << 1) | (p_nIndex & 1); p_nIndex >>= 1; } return rev; } void FFT::process(bool p_bInverseTransform, const double *p_lpRealIn, const double *p_lpImagIn, double *p_lpRealOut, double *p_lpImagOut) { if (!p_lpRealIn || !p_lpRealOut || !p_lpImagOut) return; // std::cerr << "FFT::process(" << m_n << "," << p_bInverseTransform << ")" << std::endl; unsigned int NumBits; unsigned int i, j, k, n; unsigned int BlockSize, BlockEnd; double angle_numerator = 2.0 * M_PI; double tr, ti; if( !MathUtilities::isPowerOfTwo(m_n) ) { std::cerr << "ERROR: FFT::process: Non-power-of-two FFT size " << m_n << " not supported in this implementation" << std::endl; return; } if( p_bInverseTransform ) angle_numerator = -angle_numerator; NumBits = numberOfBitsNeeded ( m_n ); for( i=0; i < m_n; i++ ) { j = reverseBits ( i, NumBits ); p_lpRealOut[j] = p_lpRealIn[i]; p_lpImagOut[j] = (p_lpImagIn == 0) ? 0.0 : p_lpImagIn[i]; } BlockEnd = 1; for( BlockSize = 2; BlockSize <= m_n; BlockSize <<= 1 ) { double delta_angle = angle_numerator / (double)BlockSize; double sm2 = -sin ( -2 * delta_angle ); double sm1 = -sin ( -delta_angle ); double cm2 = cos ( -2 * delta_angle ); double cm1 = cos ( -delta_angle ); double w = 2 * cm1; double ar[3], ai[3]; for( i=0; i < m_n; i += BlockSize ) { ar[2] = cm2; ar[1] = cm1; ai[2] = sm2; ai[1] = sm1; for ( j=i, n=0; n < BlockEnd; j++, n++ ) { ar[0] = w*ar[1] - ar[2]; ar[2] = ar[1]; ar[1] = ar[0]; ai[0] = w*ai[1] - ai[2]; ai[2] = ai[1]; ai[1] = ai[0]; k = j + BlockEnd; tr = ar[0]*p_lpRealOut[k] - ai[0]*p_lpImagOut[k]; ti = ar[0]*p_lpImagOut[k] + ai[0]*p_lpRealOut[k]; p_lpRealOut[k] = p_lpRealOut[j] - tr; p_lpImagOut[k] = p_lpImagOut[j] - ti; p_lpRealOut[j] += tr; p_lpImagOut[j] += ti; } } BlockEnd = BlockSize; } if( p_bInverseTransform ) { double denom = (double)m_n; for ( i=0; i < m_n; i++ ) { p_lpRealOut[i] /= denom; p_lpImagOut[i] /= denom; } } }