/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ /* QM DSP Library Centre for Digital Music, Queen Mary, University of London. This file copyright 2008-2009 Matthew Davies and QMUL. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. See the file COPYING included with this distribution for more information. */ #include "TempoTrackV2.h" #include #include #include #include "maths/MathUtilities.h" #define EPS 0.0000008 // just some arbitrary small number TempoTrackV2::TempoTrackV2(float rate, size_t increment) : m_rate(rate), m_increment(increment) { } TempoTrackV2::~TempoTrackV2() { } void TempoTrackV2::filter_df(d_vec_t &df) { d_vec_t a(3); d_vec_t b(3); d_vec_t lp_df(df.size()); //equivalent in matlab to [b,a] = butter(2,0.4); a[0] = 1.0000; a[1] = -0.3695; a[2] = 0.1958; b[0] = 0.2066; b[1] = 0.4131; b[2] = 0.2066; double inp1 = 0.; double inp2 = 0.; double out1 = 0.; double out2 = 0.; // forwards filtering for (unsigned int i = 0;i < df.size();i++) { lp_df[i] = b[0]*df[i] + b[1]*inp1 + b[2]*inp2 - a[1]*out1 - a[2]*out2; inp2 = inp1; inp1 = df[i]; out2 = out1; out1 = lp_df[i]; } // copy forwards filtering to df... // but, time-reversed, ready for backwards filtering for (unsigned int i = 0;i < df.size();i++) { df[i] = lp_df[df.size()-i-1]; } for (unsigned int i = 0;i < df.size();i++) { lp_df[i] = 0.; } inp1 = 0.; inp2 = 0.; out1 = 0.; out2 = 0.; // backwards filetering on time-reversed df for (unsigned int i = 0;i < df.size();i++) { lp_df[i] = b[0]*df[i] + b[1]*inp1 + b[2]*inp2 - a[1]*out1 - a[2]*out2; inp2 = inp1; inp1 = df[i]; out2 = out1; out1 = lp_df[i]; } // write the re-reversed (i.e. forward) version back to df for (unsigned int i = 0;i < df.size();i++) { df[i] = lp_df[df.size()-i-1]; } } // MEPD 28/11/12 // This function now allows for a user to specify an inputtempo (in BPM) // and a flag "constraintempo" which replaces the general rayleigh weighting for periodicities // with a gaussian which is centered around the input tempo // Note, if inputtempo = 120 and constraintempo = false, then functionality is // as it was before void TempoTrackV2::calculateBeatPeriod(const vector &df, vector &beat_period, vector &tempi, double inputtempo, bool constraintempo) { // to follow matlab.. split into 512 sample frames with a 128 hop size // calculate the acf, // then the rcf.. and then stick the rcfs as columns of a matrix // then call viterbi decoding with weight vector and transition matrix // and get best path unsigned int wv_len = 128; // MEPD 28/11/12 // the default value of inputtempo in the beat tracking plugin is 120 // so if the user specifies a different inputtempo, the rayparam will be updated // accordingly. // note: 60*44100/512 is a magic number // this might (will?) break if a user specifies a different frame rate for the onset detection function double rayparam = (60*44100/512)/inputtempo; // these debug statements can be removed. // std::cerr << "inputtempo" << inputtempo << std::endl; // std::cerr << "rayparam" << rayparam << std::endl; // std::cerr << "constraintempo" << constraintempo << std::endl; // make rayleigh weighting curve d_vec_t wv(wv_len); // check whether or not to use rayleigh weighting (if constraintempo is false) // or use gaussian weighting it (constraintempo is true) if (constraintempo) { for (unsigned int i=0; i (i)-rayparam),2.)) / (2.*pow(rayparam/4.,2.)) ); } } else { for (unsigned int i=0; i (i) / pow(rayparam,2.)) * exp((-1.*pow(-static_cast (i),2.)) / (2.*pow(rayparam,2.))); } } // beat tracking frame size (roughly 6 seconds) and hop (1.5 seconds) unsigned int winlen = 512; unsigned int step = 128; // matrix to store output of comb filter bank, increment column of matrix at each frame d_mat_t rcfmat; int col_counter = -1; // main loop for beat period calculation for (unsigned int i=0; i+winlen (sum/ (dfframe.size()-lag)); } // now apply comb filtering int numelem = 4; for (unsigned int i = 2;i < rcf.size();i++) // max beat period { for (int a = 1;a <= numelem;a++) // number of comb elements { for (int b = 1-a;b <= a-1;b++) // general state using normalisation of comb elements { rcf[i-1] += ( acf[(a*i+b)-1]*wv[i-1] ) / (2.*a-1.); // calculate value for comb filter row } } } // apply adaptive threshold to rcf MathUtilities::adaptiveThreshold(rcf); double rcfsum =0.; for (unsigned int i=0; i(i); tmat[i][j] = exp( (-1.*pow((j-mu),2.)) / (2.*pow(sigma,2.)) ); } } // parameters for Viterbi decoding... this part is taken from // Murphy's matlab d_mat_t delta; i_mat_t psi; for (unsigned int i=0;i 0 ;t--) { bestpath[t] = psi[t+1][bestpath[t+1]]; } // weird but necessary hack -- couldn't get above loop to terminate at t >= 0 bestpath[0] = psi[1][bestpath[1]]; unsigned int lastind = 0; for (unsigned int i=0; i &df, const vector &beat_period, vector &beats, double alpha, double tightness) { if (df.empty() || beat_period.empty()) return; d_vec_t cumscore(df.size()); // store cumulative score i_vec_t backlink(df.size()); // backlink (stores best beat locations at each time instant) d_vec_t localscore(df.size()); // localscore, for now this is the same as the detection function for (unsigned int i=0; i (beat_period[i]); txwt[j] = exp( -0.5*pow(tightness * log((round(2*mu)-j)/mu),2)); // IF IN THE ALLOWED RANGE, THEN LOOK AT CUMSCORE[I+PRANGE_MIN+J // ELSE LEAVE AT DEFAULT VALUE FROM INITIALISATION: D_VEC_T SCORECANDS (TXWT.SIZE()); int cscore_ind = i+prange_min+j; if (cscore_ind >= 0) { scorecands[j] = txwt[j] * cumscore[cscore_ind]; } } // find max value and index of maximum value double vv = get_max_val(scorecands); int xx = get_max_ind(scorecands); cumscore[i] = alpha*vv + (1.-alpha)*localscore[i]; backlink[i] = i+prange_min+xx; // std::cerr << "backlink[" << i << "] <= " << backlink[i] << std::endl; } // STARTING POINT, I.E. LAST BEAT.. PICK A STRONG POINT IN cumscore VECTOR d_vec_t tmp_vec; for (unsigned int i=cumscore.size() - beat_period[beat_period.size()-1] ; i= (int)backlink.size()) startpoint = backlink.size()-1; // USE BACKLINK TO GET EACH NEW BEAT (TOWARDS THE BEGINNING OF THE FILE) // BACKTRACKING FROM THE END TO THE BEGINNING.. MAKING SURE NOT TO GO BEFORE SAMPLE 0 i_vec_t ibeats; ibeats.push_back(startpoint); // std::cerr << "startpoint = " << startpoint << std::endl; while (backlink[ibeats.back()] > 0) { // std::cerr << "backlink[" << ibeats.back() << "] = " << backlink[ibeats.back()] << std::endl; int b = ibeats.back(); if (backlink[b] == b) break; // shouldn't happen... haha ibeats.push_back(backlink[b]); } // REVERSE SEQUENCE OF IBEATS AND STORE AS BEATS for (unsigned int i=0; i(ibeats[ibeats.size()-i-1]) ); } }