/* * cluster_segmenter.c * soundbite * * Created by Mark Levy on 06/04/2006. * Copyright 2006 Centre for Digital Music, Queen Mary, University of London. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. See the file COPYING included with this distribution for more information. * */ #include "cluster_segmenter.h" extern int readmatarray_size(const char *filepath, int n_array, int* t, int* d); extern int readmatarray(const char *filepath, int n_array, int t, int d, double** arr); /* converts constant-Q features to normalised chroma */ void cq2chroma(double** cq, int nframes, int ncoeff, int bins, double** chroma) { int noct = ncoeff / bins; /* number of complete octaves in constant-Q */ int t, b, oct, ix; //double maxchroma; /* max chroma value at each time, for normalisation */ //double sum; /* for normalisation */ for (t = 0; t < nframes; t++) { for (b = 0; b < bins; b++) chroma[t][b] = 0; for (oct = 0; oct < noct; oct++) { ix = oct * bins; for (b = 0; b < bins; b++) chroma[t][b] += fabs(cq[t][ix+b]); } /* normalise to unit sum sum = 0; for (b = 0; b < bins; b++) sum += chroma[t][b]; for (b = 0; b < bins; b++) chroma[t][b] /= sum; */ /* normalise to unit max - NO this made results much worse! maxchroma = 0; for (b = 0; b < bins; b++) if (chroma[t][b] > maxchroma) maxchroma = chroma[t][b]; if (maxchroma > 0) for (b = 0; b < bins; b++) chroma[t][b] /= maxchroma; */ } } /* applies MPEG-7 normalisation to constant-Q features, storing normalised envelope (norm) in last feature dimension */ void mpeg7_constq(double** features, int nframes, int ncoeff) { int i, j; double ss; double env; double maxenv = 0; /* convert const-Q features to dB scale */ for (i = 0; i < nframes; i++) for (j = 0; j < ncoeff; j++) features[i][j] = 10.0 * log10(features[i][j]+DBL_EPSILON); /* normalise each feature vector and add the norm as an extra feature dimension */ for (i = 0; i < nframes; i++) { ss = 0; for (j = 0; j < ncoeff; j++) ss += features[i][j] * features[i][j]; env = sqrt(ss); for (j = 0; j < ncoeff; j++) features[i][j] /= env; features[i][ncoeff] = env; if (env > maxenv) maxenv = env; } /* normalise the envelopes */ for (i = 0; i < nframes; i++) features[i][ncoeff] /= maxenv; } /* return histograms h[nx*m] of data x[nx] into m bins using a sliding window of length h_len (MUST BE ODD) */ /* NB h is a vector in row major order, as required by cluster_melt() */ /* for historical reasons we normalise the histograms by their norm (not to sum to one) */ void create_histograms(int* x, int nx, int m, int hlen, double* h) { int i, j, t; double norm; for (i = 0; i < nx*m; i++) h[i] = 0; for (i = hlen/2; i < nx-hlen/2; i++) { for (j = 0; j < m; j++) h[i*m+j] = 0; for (t = i-hlen/2; t <= i+hlen/2; t++) ++h[i*m+x[t]]; norm = 0; for (j = 0; j < m; j++) norm += h[i*m+j] * h[i*m+j]; for (j = 0; j < m; j++) h[i*m+j] /= norm; } /* duplicate histograms at beginning and end to create one histogram for each data value supplied */ for (i = 0; i < hlen/2; i++) for (j = 0; j < m; j++) h[i*m+j] = h[hlen/2*m+j]; for (i = nx-hlen/2; i < nx; i++) for (j = 0; j < m; j++) h[i*m+j] = h[(nx-hlen/2-1)*m+j]; } /* segment using HMM and then histogram clustering */ void cluster_segment(int* q, double** features, int frames_read, int feature_length, int nHMM_states, int histogram_length, int nclusters, int neighbour_limit) { int i, j; /*****************************/ if (0) { /* try just using the predominant bin number as a 'decoded state' */ nHMM_states = feature_length + 1; /* allow a 'zero' state */ double chroma_thresh = 0.05; double maxval; int maxbin; for (i = 0; i < frames_read; i++) { maxval = 0; for (j = 0; j < feature_length; j++) { if (features[i][j] > maxval) { maxval = features[i][j]; maxbin = j; } } if (maxval > chroma_thresh) q[i] = maxbin; else q[i] = feature_length; } } if (1) { /*****************************/ /* scale all the features to 'balance covariances' during HMM training */ double scale = 10; for (i = 0; i < frames_read; i++) for (j = 0; j < feature_length; j++) features[i][j] *= scale; /* train an HMM on the features */ /* create a model */ model_t* model = hmm_init(features, frames_read, feature_length, nHMM_states); /* train the model */ hmm_train(features, frames_read, model); /* printf("\n\nafter training:\n"); hmm_print(model); */ /* decode the hidden state sequence */ viterbi_decode(features, frames_read, model, q); hmm_close(model); /*****************************/ } /*****************************/ /* fprintf(stderr, "HMM state sequence:\n"); for (i = 0; i < frames_read; i++) fprintf(stderr, "%d ", q[i]); fprintf(stderr, "\n\n"); */ /* create histograms of states */ double* h = (double*) malloc(frames_read*nHMM_states*sizeof(double)); /* vector in row major order */ create_histograms(q, frames_read, nHMM_states, histogram_length, h); /* cluster the histograms */ int nbsched = 20; /* length of inverse temperature schedule */ double* bsched = (double*) malloc(nbsched*sizeof(double)); /* inverse temperature schedule */ double b0 = 100; double alpha = 0.7; bsched[0] = b0; for (i = 1; i < nbsched; i++) bsched[i] = alpha * bsched[i-1]; cluster_melt(h, nHMM_states, frames_read, bsched, nbsched, nclusters, neighbour_limit, q); /* now q holds a sequence of cluster assignments */ free(h); free(bsched); } /* segment constant-Q or chroma features */ void constq_segment(int* q, double** features, int frames_read, int bins, int ncoeff, int feature_type, int nHMM_states, int histogram_length, int nclusters, int neighbour_limit) { int feature_length; double** chroma; int i; if (feature_type == FEATURE_TYPE_CONSTQ) { /* fprintf(stderr, "Converting to dB and normalising...\n"); */ mpeg7_constq(features, frames_read, ncoeff); /* fprintf(stderr, "Running PCA...\n"); */ /* do PCA on the features (but not the envelope) */ int ncomponents = 20; pca_project(features, frames_read, ncoeff, ncomponents); /* copy the envelope so that it immediatly follows the chosen components */ for (i = 0; i < frames_read; i++) features[i][ncomponents] = features[i][ncoeff]; feature_length = ncomponents + 1; /************************************** //TEST // feature file name char* dir = "/Users/mark/documents/semma/audio/"; char* file_name = (char*) malloc((strlen(dir) + strlen(trackname) + strlen("_features_c20r8h0.2f0.6.mat") + 1)*sizeof(char)); strcpy(file_name, dir); strcat(file_name, trackname); strcat(file_name, "_features_c20r8h0.2f0.6.mat"); // get the features from Matlab from mat-file int frames_in_file; readmatarray_size(file_name, 2, &frames_in_file, &feature_length); readmatarray(file_name, 2, frames_in_file, feature_length, features); // copy final frame to ensure that we get as many as we expected int missing_frames = frames_read - frames_in_file; while (missing_frames > 0) { for (i = 0; i < feature_length; i++) features[frames_read-missing_frames][i] = features[frames_read-missing_frames-1][i]; --missing_frames; } free(file_name); ******************************************/ cluster_segment(q, features, frames_read, feature_length, nHMM_states, histogram_length, nclusters, neighbour_limit); } if (feature_type == FEATURE_TYPE_CHROMA) { /* fprintf(stderr, "Converting to chroma features...\n"); */ /* convert constant-Q to normalised chroma features */ chroma = (double**) malloc(frames_read*sizeof(double*)); for (i = 0; i < frames_read; i++) chroma[i] = (double*) malloc(bins*sizeof(double)); cq2chroma(features, frames_read, ncoeff, bins, chroma); feature_length = bins; cluster_segment(q, chroma, frames_read, feature_length, nHMM_states, histogram_length, nclusters, neighbour_limit); for (i = 0; i < frames_read; i++) free(chroma[i]); free(chroma); } }