/* * Copyright (C) 2016-2017 Robin Gareus * Copyright (C) 2016 Damien Zammit * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include #include #include #include "lv2/lv2plug.in/ns/lv2core/lv2.h" #include "lv2/lv2plug.in/ns/ext/atom/atom.h" #include "lv2/lv2plug.in/ns/ext/time/time.h" #include "lv2/lv2plug.in/ns/ext/atom/forge.h" #include "lv2/lv2plug.in/ns/ext/urid/urid.h" #define ADELAY_URI "urn:ardour:a-delay" // 8 seconds of delay at 96kHz #define MAX_DELAY 768000 #ifndef M_PI # define M_PI 3.1415926 #endif #ifdef COMPILER_MSVC #include #define isfinite_local(val) (bool)_finite((double)val) #else #define isfinite_local isfinite #endif typedef enum { ADELAY_INPUT = 0, ADELAY_OUTPUT, ADELAY_BPM, ADELAY_INV, ADELAY_SYNC, ADELAY_TIME, ADELAY_DIVISOR, ADELAY_WETDRY, ADELAY_FEEDBACK, ADELAY_LPF, ADELAY_GAIN, ADELAY_DELAYTIME, ADELAY_ENABLE, } PortIndex; typedef struct { LV2_URID atom_Blank; LV2_URID atom_Object; LV2_URID atom_Sequence; LV2_URID atom_Long; LV2_URID atom_Int; LV2_URID atom_Float; LV2_URID atom_Double; LV2_URID time_beatUnit; LV2_URID time_beatsPerMinute; LV2_URID time_Position; } DelayURIs; typedef struct { float* input; float* output; const LV2_Atom_Sequence* atombpm; float* inv; float* sync; float* time; float* divisor; float* wetdry; float* feedback; float* lpf; float* gain; float* delaytime; float* enable; float srate; float bpm; float beatunit; int bpmvalid; uint32_t posz; float tap[2]; float z[MAX_DELAY]; int active; int next; float fbstate; float lpfold; float feedbackold; float divisorold; float gainold; float invertold; float timeold; float delaytimeold; float syncold; float wetdryold; float delaysamplesold; float tau; float A0, A1, A2, A3, A4, A5; float B0, B1, B2, B3, B4, B5; float state[4]; DelayURIs uris; LV2_Atom_Forge forge; LV2_URID_Map* map; } ADelay; static inline void map_uris(LV2_URID_Map* map, DelayURIs* uris) { uris->atom_Blank = map->map(map->handle, LV2_ATOM__Blank); uris->atom_Object = map->map(map->handle, LV2_ATOM__Object); uris->atom_Sequence = map->map(map->handle, LV2_ATOM__Sequence); uris->atom_Long = map->map(map->handle, LV2_ATOM__Long); uris->atom_Int = map->map(map->handle, LV2_ATOM__Int); uris->atom_Float = map->map(map->handle, LV2_ATOM__Float); uris->atom_Double = map->map(map->handle, LV2_ATOM__Double); uris->time_beatUnit = map->map(map->handle, LV2_TIME__beatUnit); uris->time_beatsPerMinute = map->map(map->handle, LV2_TIME__beatsPerMinute); uris->time_Position = map->map(map->handle, LV2_TIME__Position); } static LV2_Handle instantiate(const LV2_Descriptor* descriptor, double rate, const char* bundle_path, const LV2_Feature* const* features) { int i; ADelay* adelay = (ADelay*)calloc(1, sizeof(ADelay)); if (!adelay) return NULL; for (i = 0; features[i]; ++i) { if (!strcmp(features[i]->URI, LV2_URID__map)) { adelay->map = (LV2_URID_Map*)features[i]->data; } } if (!adelay->map) { fprintf(stderr, "a-delay.lv2 error: Host does not support urid:map\n"); free(adelay); return NULL; } map_uris(adelay->map, &adelay->uris); lv2_atom_forge_init(&adelay->forge, adelay->map); adelay->srate = rate; adelay->bpmvalid = 0; adelay->tau = (1.0 - exp (-2.f * M_PI * 25.f / adelay->srate)); return (LV2_Handle)adelay; } static void connect_port(LV2_Handle instance, uint32_t port, void* data) { ADelay* adelay = (ADelay*)instance; switch ((PortIndex)port) { case ADELAY_INPUT: adelay->input = (float*)data; break; case ADELAY_OUTPUT: adelay->output = (float*)data; break; case ADELAY_BPM: adelay->atombpm = (const LV2_Atom_Sequence*)data; break; case ADELAY_INV: adelay->inv = (float*)data; break; case ADELAY_SYNC: adelay->sync = (float*)data; break; case ADELAY_TIME: adelay->time = (float*)data; break; case ADELAY_DIVISOR: adelay->divisor = (float*)data; break; case ADELAY_WETDRY: adelay->wetdry = (float*)data; break; case ADELAY_FEEDBACK: adelay->feedback = (float*)data; break; case ADELAY_LPF: adelay->lpf = (float*)data; break; case ADELAY_GAIN: adelay->gain = (float*)data; break; case ADELAY_DELAYTIME: adelay->delaytime = (float*)data; break; case ADELAY_ENABLE: adelay->enable = (float*)data; break; } } static inline float sanitize_denormal(const float value) { if (!isnormal(value)) { return 0.f; } return value; } static inline float sanitize_input(const float value) { if (!isfinite_local (value)) { return 0.f; } return value; } static inline float from_dB(float gdb) { return (exp(gdb/20.f*log(10.f))); } static inline float to_dB(float g) { return (20.f*log10(g)); } static inline bool is_eq(float a, float b, float small) { return (fabsf(a - b) < small); } static void clearfilter(LV2_Handle instance) { ADelay* adelay = (ADelay*)instance; adelay->state[0] = adelay->state[1] = adelay->state[2] = adelay->state[3] = 0.f; } static void activate(LV2_Handle instance) { ADelay* adelay = (ADelay*)instance; int i; for (i = 0; i < MAX_DELAY; i++) { adelay->z[i] = 0.f; } adelay->posz = 0; adelay->tap[0] = 0; adelay->tap[1] = 0; adelay->active = 0; adelay->next = 1; adelay->fbstate = 0.f; clearfilter(adelay); adelay->lpfold = 0.f; adelay->divisorold = 0.f; adelay->gainold = 0.f; adelay->invertold = 0.f; adelay->timeold = 0.f; adelay->delaytimeold = 0.f; adelay->syncold = 0.f; adelay->wetdryold = 0.f; adelay->delaysamplesold = 1.f; } static void lpfRbj(LV2_Handle instance, float fc, float srate) { ADelay* adelay = (ADelay*)instance; float w0, alpha, cw, sw, q; q = 0.707; w0 = (2. * M_PI * fc / srate); sw = sin(w0); cw = cos(w0); alpha = sw / (2. * q); adelay->A0 = 1. + alpha; adelay->A1 = -2. * cw; adelay->A2 = 1. - alpha; adelay->B0 = (1. - cw) / 2.; adelay->B1 = (1. - cw); adelay->B2 = adelay->B0; adelay->A3 = 1. + alpha; adelay->A4 = -2. * cw; adelay->A5 = 1. - alpha; adelay->B3 = (1. - cw) / 2.; adelay->B4 = (1. - cw); adelay->B5 = adelay->B3; } static float runfilter(LV2_Handle instance, const float in) { ADelay* a = (ADelay*)instance; float out; out = a->B0/a->A0*in + a->B1/a->A0*a->state[0] + a->B2/a->A0*a->state[1] -a->A1/a->A0*a->state[2] - a->A2/a->A0*a->state[3] + 1e-20; a->state[1] = a->state[0]; a->state[0] = in; a->state[3] = a->state[2]; a->state[2] = sanitize_input (out); return out; } static bool update_bpm(ADelay* self, const LV2_Atom_Object* obj) { bool changed = false; const DelayURIs* uris = &self->uris; // Received new transport bpm/beatunit LV2_Atom *beatunit = NULL, *bpm = NULL; lv2_atom_object_get(obj, uris->time_beatUnit, &beatunit, uris->time_beatsPerMinute, &bpm, NULL); // Tempo changed, update BPM if (bpm && bpm->type == uris->atom_Float) { float b = ((LV2_Atom_Float*)bpm)->body; if (self->bpm != b) { changed = true; } self->bpm = b; } // Time signature changed, update beatunit if (beatunit && beatunit->type == uris->atom_Int) { int b = ((LV2_Atom_Int*)beatunit)->body; if (self->beatunit != b) { changed = true; } self->beatunit = b; } self->bpmvalid = 1; return changed; } static void run(LV2_Handle instance, uint32_t n_samples) { ADelay* adelay = (ADelay*)instance; const float* const input = adelay->input; float* const output = adelay->output; const float srate = adelay->srate; const float tau = adelay->tau; float wetdry_target = *adelay->wetdry / 100.f; float gain_target = from_dB(*adelay->gain); float wetdry = adelay->wetdryold; float gain = adelay->gainold; if (*adelay->enable <= 0) { wetdry_target = 0.f; gain_target = 1.0; } uint32_t i; float in; int delaysamples = 0; unsigned int tmp; float inv; float xfade; bool recalc = false; // TODO LPF if (*(adelay->inv) < 0.5) { inv = -1.f; } else { inv = 1.f; } if (adelay->atombpm) { LV2_Atom_Event* ev = lv2_atom_sequence_begin(&(adelay->atombpm)->body); while(!lv2_atom_sequence_is_end(&(adelay->atombpm)->body, (adelay->atombpm)->atom.size, ev)) { if (ev->body.type == adelay->uris.atom_Blank || ev->body.type == adelay->uris.atom_Object) { const LV2_Atom_Object* obj = (LV2_Atom_Object*)&ev->body; if (obj->body.otype == adelay->uris.time_Position) { recalc = update_bpm(adelay, obj); // TODO: split process on BPM change. (independent of buffer-size) } } ev = lv2_atom_sequence_next(ev); } } if (*(adelay->inv) != adelay->invertold) { recalc = true; } if (*(adelay->sync) != adelay->syncold) { recalc = true; } if (*(adelay->time) != adelay->timeold) { recalc = true; } if (*(adelay->feedback) != adelay->feedbackold) { recalc = true; } if (*(adelay->divisor) != adelay->divisorold) { recalc = true; } if (!is_eq(adelay->lpfold, *adelay->lpf, 0.1)) { float tc = (1.0 - exp (-2.f * M_PI * n_samples * 25.f / adelay->srate)); adelay->lpfold += tc * (*adelay->lpf - adelay->lpfold); recalc = true; } // rg says: in case the delay-time changes, oversampling/interpolate + LPF // would me more appropriate. if (recalc) { lpfRbj(adelay, adelay->lpfold, srate); if (*(adelay->sync) > 0.5f && adelay->bpmvalid) { *(adelay->delaytime) = adelay->beatunit * 1000.f * 60.f / (adelay->bpm * *(adelay->divisor)); } else { *(adelay->delaytime) = *(adelay->time); } delaysamples = (int)(*(adelay->delaytime) * srate) / 1000; adelay->tap[adelay->next] = delaysamples; } xfade = 0.f; float fbstate = adelay->fbstate; const float feedback = *adelay->feedback; for (i = 0; i < n_samples; i++) { in = sanitize_input (input[i]); adelay->z[adelay->posz] = sanitize_denormal (in + feedback / 100.f * fbstate); int p = adelay->posz - adelay->tap[adelay->active]; // active line if (p<0) p += MAX_DELAY; fbstate = adelay->z[p]; if (recalc) { xfade += 1.0f / (float)n_samples; fbstate *= (1.-xfade); p = adelay->posz - adelay->tap[adelay->next]; // next line if (p<0) p += MAX_DELAY; fbstate += adelay->z[p] * xfade; } wetdry += tau * (wetdry_target - wetdry) + 1e-12; gain += tau * (gain_target - gain) + 1e-12; output[i] = (1.f - wetdry) * in; output[i] += wetdry * -inv * runfilter(adelay, fbstate); output[i] *= gain; if (++(adelay->posz) >= MAX_DELAY) { adelay->posz = 0; } } adelay->fbstate = fbstate; adelay->feedbackold = *(adelay->feedback); adelay->divisorold = *(adelay->divisor); adelay->invertold = *(adelay->inv); adelay->timeold = *(adelay->time); adelay->syncold = *(adelay->sync); adelay->wetdryold = wetdry; adelay->gainold = gain; adelay->delaytimeold = *(adelay->delaytime); adelay->delaysamplesold = delaysamples; if (recalc) { tmp = adelay->active; adelay->active = adelay->next; adelay->next = tmp; } } static void cleanup(LV2_Handle instance) { free(instance); } static const void* extension_data(const char* uri) { return NULL; } static const LV2_Descriptor descriptor = { ADELAY_URI, instantiate, connect_port, activate, run, NULL, cleanup, extension_data }; LV2_SYMBOL_EXPORT const LV2_Descriptor* lv2_descriptor(uint32_t index) { switch (index) { case 0: return &descriptor; default: return NULL; } }