/* This file is part of Evoral. * Copyright (C) 2008 David Robillard * Copyright (C) 2000-2008 Paul Davis * * Evoral is free software; you can redistribute it and/or modify it under the * terms of the GNU General Public License as published by the Free Software * Foundation; either version 2 of the License, or (at your option) any later * version. * * Evoral is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS * FOR A PARTICULAR PURPOSE. See the GNU General Public License for details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include #include #include #include "evoral/ControlList.hpp" #include "evoral/Curve.hpp" using namespace std; namespace Evoral { inline bool event_time_less_than (ControlEvent* a, ControlEvent* b) { return a->when < b->when; } ControlList::ControlList (const Parameter& id) : _parameter(id) , _interpolation(Linear) , _curve(0) { _frozen = 0; _changed_when_thawed = false; _min_yval = id.min(); _max_yval = id.max(); _max_xval = 0; // means "no limit" _default_value = 0; _lookup_cache.left = -1; _lookup_cache.range.first = _events.end(); _search_cache.left = -1; _search_cache.first = _events.end(); _sort_pending = false; } ControlList::ControlList (const ControlList& other) : _parameter(other._parameter) , _interpolation(Linear) , _curve(0) { _frozen = 0; _changed_when_thawed = false; _min_yval = other._min_yval; _max_yval = other._max_yval; _max_xval = other._max_xval; _default_value = other._default_value; _lookup_cache.range.first = _events.end(); _search_cache.first = _events.end(); _sort_pending = false; for (const_iterator i = other._events.begin(); i != other._events.end(); ++i) { _events.push_back (new ControlEvent (**i)); } mark_dirty (); } ControlList::ControlList (const ControlList& other, double start, double end) : _parameter(other._parameter) , _interpolation(Linear) , _curve(0) { _frozen = 0; _changed_when_thawed = false; _min_yval = other._min_yval; _max_yval = other._max_yval; _max_xval = other._max_xval; _default_value = other._default_value; _lookup_cache.range.first = _events.end(); _search_cache.first = _events.end(); _sort_pending = false; /* now grab the relevant points, and shift them back if necessary */ boost::shared_ptr section = const_cast(&other)->copy (start, end); if (!section->empty()) { for (iterator i = section->begin(); i != section->end(); ++i) { _events.push_back (new ControlEvent ((*i)->when, (*i)->value)); } } mark_dirty (); } ControlList::~ControlList() { for (EventList::iterator x = _events.begin(); x != _events.end(); ++x) { delete (*x); } for (list::iterator n = nascent.begin(); n != nascent.end(); ++n) { for (EventList::iterator x = (*n)->events.begin(); x != (*n)->events.end(); ++x) { delete *x; } delete (*n); } delete _curve; } boost::shared_ptr ControlList::create(Parameter id) { return boost::shared_ptr(new ControlList(id)); } bool ControlList::operator== (const ControlList& other) { return _events == other._events; } ControlList& ControlList::operator= (const ControlList& other) { if (this != &other) { _events.clear (); for (const_iterator i = other._events.begin(); i != other._events.end(); ++i) { _events.push_back (new ControlEvent (**i)); } _min_yval = other._min_yval; _max_yval = other._max_yval; _max_xval = other._max_xval; _default_value = other._default_value; mark_dirty (); maybe_signal_changed (); } return *this; } void ControlList::create_curve() { _curve = new Curve(*this); } void ControlList::destroy_curve() { delete _curve; _curve = NULL; } void ControlList::maybe_signal_changed () { mark_dirty (); if (_frozen) { _changed_when_thawed = true; } } void ControlList::clear () { { Glib::Mutex::Lock lm (_lock); _events.clear (); mark_dirty (); } maybe_signal_changed (); } void ControlList::x_scale (double factor) { Glib::Mutex::Lock lm (_lock); _x_scale (factor); } bool ControlList::extend_to (double when) { Glib::Mutex::Lock lm (_lock); if (_events.empty() || _events.back()->when == when) { return false; } double factor = when / _events.back()->when; _x_scale (factor); return true; } void ControlList::_x_scale (double factor) { for (iterator i = _events.begin(); i != _events.end(); ++i) { (*i)->when *= factor; } mark_dirty (); } void ControlList::write_pass_finished (double when) { merge_nascent (when); } struct ControlEventTimeComparator { bool operator() (ControlEvent* a, ControlEvent* b) { return a->when < b->when; } }; void ControlList::merge_nascent (double when) { { Glib::Mutex::Lock lm (_lock); if (nascent.empty()) { return; } for (list::iterator n = nascent.begin(); n != nascent.end(); ++n) { NascentInfo* ninfo = *n; EventList& nascent_events (ninfo->events); bool need_adjacent_start_clamp; bool need_adjacent_end_clamp; if (nascent_events.empty()) { delete ninfo; continue; } nascent_events.sort (ControlEventTimeComparator ()); if (ninfo->start_time < 0.0) { ninfo->start_time = nascent_events.front()->when; } if (ninfo->end_time < 0.0) { ninfo->end_time = when; } bool preexisting = !_events.empty(); if (!preexisting) { _events = nascent_events; } else if (ninfo->end_time < _events.front()->when) { /* all points in nascent are before the first existing point */ _events.insert (_events.begin(), nascent_events.begin(), nascent_events.end()); } else if (ninfo->start_time > _events.back()->when) { /* all points in nascent are after the last existing point */ _events.insert (_events.end(), nascent_events.begin(), nascent_events.end()); } else { /* find the range that overlaps with nascent events, and insert the contents of nascent events. */ iterator i; iterator range_begin = _events.end(); iterator range_end = _events.end(); double end_value = unlocked_eval (ninfo->end_time); double start_value = unlocked_eval (ninfo->start_time - 1); need_adjacent_end_clamp = true; need_adjacent_start_clamp = true; for (i = _events.begin(); i != _events.end(); ++i) { if ((*i)->when == ninfo->start_time) { /* existing point at same time, remove it and the consider the next point instead. */ i = _events.erase (i); if (i == _events.end()) { break; } if (range_begin == _events.end()) { range_begin = i; need_adjacent_start_clamp = false; } else { need_adjacent_end_clamp = false; } if ((*i)->when > ninfo->end_time) { range_end = i; break; } } else if ((*i)->when > ninfo->start_time) { if (range_begin == _events.end()) { range_begin = i; } if ((*i)->when > ninfo->end_time) { range_end = i; break; } } } /* Now: range_begin is the first event on our list after the first nascent event range_end is the first event on our list after the last nascent event range_begin may be equal to _events.end() iff the last event on our list was at the same time as the first nascent event. */ if (range_begin != _events.begin()) { /* clamp point before */ if (need_adjacent_start_clamp) { _events.insert (range_begin, new ControlEvent (ninfo->start_time, start_value)); } } _events.insert (range_begin, nascent_events.begin(), nascent_events.end()); if (range_end != _events.end()) { /* clamp point after */ if (need_adjacent_end_clamp) { _events.insert (range_begin, new ControlEvent (ninfo->end_time, end_value)); } } _events.erase (range_begin, range_end); } delete ninfo; } nascent.clear (); if (writing()) { nascent.push_back (new NascentInfo ()); } } maybe_signal_changed (); } void ControlList::rt_add (double when, double value) { // this is for automation recording if (touch_enabled() && !touching()) { return; } //cerr << "RT: alist " << this << " add " << value << " @ " << when << endl; Glib::Mutex::Lock lm (_lock, Glib::TRY_LOCK); if (lm.locked()) { assert (!nascent.empty()); /* we don't worry about adding events out of time order as we will sort them in merge_nascent. */ EventList& el (nascent.back()->events); if (el.size() > 1 && (when >= el.back()->when) && (value == el.back()->value)) { /* same value, later timestamp, effective slope is * zero, so just move the last point in nascent to our * new time position. this avoids storing an unlimited * number of points to represent a flat line. */ el.back()->when = when; } else { nascent.back()->events.push_back (new ControlEvent (when, value)); } } } void ControlList::thin () { Glib::Mutex::Lock lm (_lock); ControlEvent* prevprev; ControlEvent* cur; ControlEvent* prev; iterator pprev; int counter = 0; for (iterator i = _events.begin(); i != _events.end(); ++i) { cur = *i; counter++; if (counter > 2) { double area = fabs (0.5 * (prevprev->when * (prev->value - cur->value)) + (prev->when * (cur->value - prevprev->value)) + (cur->when * (prevprev->value - prev->value))); /* the number 10.0 is an arbitrary value that needs to * be controlled by some user-controllable * configuration utility. */ if (area < 10.0) { iterator tmp = pprev; /* pprev will change to current i is incremented to the next event */ pprev = i; _events.erase (tmp); continue; } } prevprev = prev; prev = cur; pprev = i; } } void ControlList::fast_simple_add (double when, double value) { /* to be used only for loading pre-sorted data from saved state */ _events.insert (_events.end(), new ControlEvent (when, value)); assert(_events.back()); } void ControlList::add (double when, double value) { /* this is for making changes from some kind of user interface or control surface (GUI, MIDI, OSC etc) */ if (!clamp_value (when, value)) { return; } { Glib::Mutex::Lock lm (_lock); ControlEvent cp (when, 0.0f); bool insert = true; iterator insertion_point; for (insertion_point = lower_bound (_events.begin(), _events.end(), &cp, time_comparator); insertion_point != _events.end(); ++insertion_point) { /* only one point allowed per time point */ if ((*insertion_point)->when == when) { (*insertion_point)->value = value; insert = false; break; } if ((*insertion_point)->when >= when) { break; } } if (insert) { _events.insert (insertion_point, new ControlEvent (when, value)); } mark_dirty (); } maybe_signal_changed (); } void ControlList::erase (iterator i) { { Glib::Mutex::Lock lm (_lock); _events.erase (i); mark_dirty (); } maybe_signal_changed (); } void ControlList::erase (iterator start, iterator end) { { Glib::Mutex::Lock lm (_lock); _events.erase (start, end); mark_dirty (); } maybe_signal_changed (); } /** Erase the first event which matches the given time and value */ void ControlList::erase (double when, double value) { { Glib::Mutex::Lock lm (_lock); iterator i = begin (); while (i != end() && ((*i)->when != when || (*i)->value != value)) { ++i; } if (i != end ()) { _events.erase (i); } mark_dirty (); } maybe_signal_changed (); } void ControlList::reset_range (double start, double endt) { bool reset = false; { Glib::Mutex::Lock lm (_lock); ControlEvent cp (start, 0.0f); iterator s; iterator e; if ((s = lower_bound (_events.begin(), _events.end(), &cp, time_comparator)) != _events.end()) { cp.when = endt; e = upper_bound (_events.begin(), _events.end(), &cp, time_comparator); for (iterator i = s; i != e; ++i) { (*i)->value = _default_value; } reset = true; mark_dirty (); } } if (reset) { maybe_signal_changed (); } } void ControlList::erase_range (double start, double endt) { bool erased = false; { Glib::Mutex::Lock lm (_lock); erased = erase_range_internal (start, endt, _events); if (erased) { mark_dirty (); } } if (erased) { maybe_signal_changed (); } } bool ControlList::erase_range_internal (double start, double endt, EventList & events) { bool erased = false; ControlEvent cp (start, 0.0f); iterator s; iterator e; if ((s = lower_bound (events.begin(), events.end(), &cp, time_comparator)) != events.end()) { cp.when = endt; e = upper_bound (events.begin(), events.end(), &cp, time_comparator); events.erase (s, e); if (s != e) { erased = true; } } return erased; } void ControlList::slide (iterator before, double distance) { { Glib::Mutex::Lock lm (_lock); if (before == _events.end()) { return; } while (before != _events.end()) { (*before)->when += distance; ++before; } mark_dirty (); } maybe_signal_changed (); } void ControlList::shift (double pos, double frames) { { Glib::Mutex::Lock lm (_lock); for (iterator i = _events.begin(); i != _events.end(); ++i) { if ((*i)->when >= pos) { (*i)->when += frames; } } mark_dirty (); } maybe_signal_changed (); } void ControlList::modify (iterator iter, double when, double val) { /* note: we assume higher level logic is in place to avoid this reordering the time-order of control events in the list. ie. all points after *iter are later than when. */ { Glib::Mutex::Lock lm (_lock); (*iter)->when = when; (*iter)->value = val; if (isnan (val)) { abort (); } if (!_frozen) { _events.sort (event_time_less_than); } else { _sort_pending = true; } mark_dirty (); } maybe_signal_changed (); } std::pair ControlList::control_points_adjacent (double xval) { Glib::Mutex::Lock lm (_lock); iterator i; ControlEvent cp (xval, 0.0f); std::pair ret; ret.first = _events.end(); ret.second = _events.end(); for (i = lower_bound (_events.begin(), _events.end(), &cp, time_comparator); i != _events.end(); ++i) { if (ret.first == _events.end()) { if ((*i)->when >= xval) { if (i != _events.begin()) { ret.first = i; --ret.first; } else { return ret; } } } if ((*i)->when > xval) { ret.second = i; break; } } return ret; } void ControlList::set_max_xval (double x) { _max_xval = x; } void ControlList::freeze () { _frozen++; } void ControlList::thaw () { assert(_frozen > 0); if (--_frozen > 0) { return; } { Glib::Mutex::Lock lm (_lock); if (_sort_pending) { _events.sort (event_time_less_than); _sort_pending = false; } } } void ControlList::mark_dirty () const { _lookup_cache.left = -1; _search_cache.left = -1; if (_curve) { _curve->mark_dirty(); } Dirty (); /* EMIT SIGNAL */ } void ControlList::truncate_end (double last_coordinate) { { Glib::Mutex::Lock lm (_lock); ControlEvent cp (last_coordinate, 0); ControlList::reverse_iterator i; double last_val; if (_events.empty()) { return; } if (last_coordinate == _events.back()->when) { return; } if (last_coordinate > _events.back()->when) { /* extending end: */ iterator foo = _events.begin(); bool lessthantwo; if (foo == _events.end()) { lessthantwo = true; } else if (++foo == _events.end()) { lessthantwo = true; } else { lessthantwo = false; } if (lessthantwo) { /* less than 2 points: add a new point */ _events.push_back (new ControlEvent (last_coordinate, _events.back()->value)); } else { /* more than 2 points: check to see if the last 2 values are equal. if so, just move the position of the last point. otherwise, add a new point. */ iterator penultimate = _events.end(); --penultimate; /* points at last point */ --penultimate; /* points at the penultimate point */ if (_events.back()->value == (*penultimate)->value) { _events.back()->when = last_coordinate; } else { _events.push_back (new ControlEvent (last_coordinate, _events.back()->value)); } } } else { /* shortening end */ last_val = unlocked_eval (last_coordinate); last_val = max ((double) _min_yval, last_val); last_val = min ((double) _max_yval, last_val); i = _events.rbegin(); /* make i point to the last control point */ ++i; /* now go backwards, removing control points that are beyond the new last coordinate. */ // FIXME: SLOW! (size() == O(n)) uint32_t sz = _events.size(); while (i != _events.rend() && sz > 2) { ControlList::reverse_iterator tmp; tmp = i; ++tmp; if ((*i)->when < last_coordinate) { break; } _events.erase (i.base()); --sz; i = tmp; } _events.back()->when = last_coordinate; _events.back()->value = last_val; } mark_dirty(); } maybe_signal_changed (); } void ControlList::truncate_start (double overall_length) { { Glib::Mutex::Lock lm (_lock); iterator i; double first_legal_value; double first_legal_coordinate; assert(!_events.empty()); if (overall_length == _events.back()->when) { /* no change in overall length */ return; } if (overall_length > _events.back()->when) { /* growing at front: duplicate first point. shift all others */ double shift = overall_length - _events.back()->when; uint32_t np; for (np = 0, i = _events.begin(); i != _events.end(); ++i, ++np) { (*i)->when += shift; } if (np < 2) { /* less than 2 points: add a new point */ _events.push_front (new ControlEvent (0, _events.front()->value)); } else { /* more than 2 points: check to see if the first 2 values are equal. if so, just move the position of the first point. otherwise, add a new point. */ iterator second = _events.begin(); ++second; /* points at the second point */ if (_events.front()->value == (*second)->value) { /* first segment is flat, just move start point back to zero */ _events.front()->when = 0; } else { /* leave non-flat segment in place, add a new leading point. */ _events.push_front (new ControlEvent (0, _events.front()->value)); } } } else { /* shrinking at front */ first_legal_coordinate = _events.back()->when - overall_length; first_legal_value = unlocked_eval (first_legal_coordinate); first_legal_value = max (_min_yval, first_legal_value); first_legal_value = min (_max_yval, first_legal_value); /* remove all events earlier than the new "front" */ i = _events.begin(); while (i != _events.end() && !_events.empty()) { ControlList::iterator tmp; tmp = i; ++tmp; if ((*i)->when > first_legal_coordinate) { break; } _events.erase (i); i = tmp; } /* shift all remaining points left to keep their same relative position */ for (i = _events.begin(); i != _events.end(); ++i) { (*i)->when -= first_legal_coordinate; } /* add a new point for the interpolated new value */ _events.push_front (new ControlEvent (0, first_legal_value)); } mark_dirty(); } maybe_signal_changed (); } double ControlList::unlocked_eval (double x) const { pair range; int32_t npoints; double lpos, upos; double lval, uval; double fraction; const_iterator length_check_iter = _events.begin(); for (npoints = 0; npoints < 4; ++npoints, ++length_check_iter) { if (length_check_iter == _events.end()) { break; } } switch (npoints) { case 0: return _default_value; case 1: return _events.front()->value; case 2: if (x >= _events.back()->when) { return _events.back()->value; } else if (x <= _events.front()->when) { return _events.front()->value; } lpos = _events.front()->when; lval = _events.front()->value; upos = _events.back()->when; uval = _events.back()->value; if (_interpolation == Discrete) { return lval; } /* linear interpolation betweeen the two points */ fraction = (double) (x - lpos) / (double) (upos - lpos); return lval + (fraction * (uval - lval)); default: if (x >= _events.back()->when) { return _events.back()->value; } else if (x <= _events.front()->when) { return _events.front()->value; } return multipoint_eval (x); } /*NOTREACHED*/ /* stupid gcc */ return _default_value; } double ControlList::multipoint_eval (double x) const { double upos, lpos; double uval, lval; double fraction; /* "Stepped" lookup (no interpolation) */ /* FIXME: no cache. significant? */ if (_interpolation == Discrete) { const ControlEvent cp (x, 0); EventList::const_iterator i = lower_bound (_events.begin(), _events.end(), &cp, time_comparator); // shouldn't have made it to multipoint_eval assert(i != _events.end()); if (i == _events.begin() || (*i)->when == x) return (*i)->value; else return (*(--i))->value; } /* Only do the range lookup if x is in a different range than last time * this was called (or if the lookup cache has been marked "dirty" (left<0) */ if ((_lookup_cache.left < 0) || ((_lookup_cache.left > x) || (_lookup_cache.range.first == _events.end()) || ((*_lookup_cache.range.second)->when < x))) { const ControlEvent cp (x, 0); _lookup_cache.range = equal_range (_events.begin(), _events.end(), &cp, time_comparator); } pair range = _lookup_cache.range; if (range.first == range.second) { /* x does not exist within the list as a control point */ _lookup_cache.left = x; if (range.first != _events.begin()) { --range.first; lpos = (*range.first)->when; lval = (*range.first)->value; } else { /* we're before the first point */ // return _default_value; return _events.front()->value; } if (range.second == _events.end()) { /* we're after the last point */ return _events.back()->value; } upos = (*range.second)->when; uval = (*range.second)->value; /* linear interpolation betweeen the two points on either side of x */ fraction = (double) (x - lpos) / (double) (upos - lpos); return lval + (fraction * (uval - lval)); } /* x is a control point in the data */ _lookup_cache.left = -1; return (*range.first)->value; } void ControlList::build_search_cache_if_necessary (double start) const { /* Only do the range lookup if x is in a different range than last time * this was called (or if the search cache has been marked "dirty" (left<0) */ if (!_events.empty() && ((_search_cache.left < 0) || (_search_cache.left > start))) { const ControlEvent start_point (start, 0); //cerr << "REBUILD: (" << _search_cache.left << ".." << _search_cache.right << ") := (" // << start << ".." << end << ")" << endl; _search_cache.first = lower_bound (_events.begin(), _events.end(), &start_point, time_comparator); _search_cache.left = start; } } /** Get the earliest event after \a start using the current interpolation style. * * If an event is found, \a x and \a y are set to its coordinates. * * \param inclusive Include events with timestamp exactly equal to \a start * \return true if event is found (and \a x and \a y are valid). */ bool ControlList::rt_safe_earliest_event (double start, double& x, double& y, bool inclusive) const { // FIXME: It would be nice if this was unnecessary.. Glib::Mutex::Lock lm(_lock, Glib::TRY_LOCK); if (!lm.locked()) { return false; } return rt_safe_earliest_event_unlocked (start, x, y, inclusive); } /** Get the earliest event after \a start using the current interpolation style. * * If an event is found, \a x and \a y are set to its coordinates. * * \param inclusive Include events with timestamp exactly equal to \a start * \return true if event is found (and \a x and \a y are valid). */ bool ControlList::rt_safe_earliest_event_unlocked (double start, double& x, double& y, bool inclusive) const { if (_interpolation == Discrete) { return rt_safe_earliest_event_discrete_unlocked(start, x, y, inclusive); } else { return rt_safe_earliest_event_linear_unlocked(start, x, y, inclusive); } } /** Get the earliest event after \a start without interpolation. * * If an event is found, \a x and \a y are set to its coordinates. * * \param inclusive Include events with timestamp exactly equal to \a start * \return true if event is found (and \a x and \a y are valid). */ bool ControlList::rt_safe_earliest_event_discrete_unlocked (double start, double& x, double& y, bool inclusive) const { build_search_cache_if_necessary (start); if (_search_cache.first != _events.end()) { const ControlEvent* const first = *_search_cache.first; const bool past_start = (inclusive ? first->when >= start : first->when > start); /* Earliest points is in range, return it */ if (past_start) { x = first->when; y = first->value; /* Move left of cache to this point * (Optimize for immediate call this cycle within range) */ _search_cache.left = x; ++_search_cache.first; assert(x >= start); return true; } else { return false; } /* No points in range */ } else { return false; } } /** Get the earliest time the line crosses an integer (Linear interpolation). * * If an event is found, \a x and \a y are set to its coordinates. * * \param inclusive Include events with timestamp exactly equal to \a start * \return true if event is found (and \a x and \a y are valid). */ bool ControlList::rt_safe_earliest_event_linear_unlocked (double start, double& x, double& y, bool inclusive) const { // cout << "earliest_event(start: " << start << ", x: " << x << ", y: " << y << ", inclusive: " << inclusive << ")" << endl; const_iterator length_check_iter = _events.begin(); if (_events.empty()) { // 0 events return false; } else if (_events.end() == ++length_check_iter) { // 1 event return rt_safe_earliest_event_discrete_unlocked (start, x, y, inclusive); } // Hack to avoid infinitely repeating the same event build_search_cache_if_necessary (start); if (_search_cache.first != _events.end()) { const ControlEvent* first = NULL; const ControlEvent* next = NULL; /* Step is after first */ if (_search_cache.first == _events.begin() || (*_search_cache.first)->when <= start) { first = *_search_cache.first; ++_search_cache.first; if (_search_cache.first == _events.end()) { return false; } next = *_search_cache.first; /* Step is before first */ } else { const_iterator prev = _search_cache.first; --prev; first = *prev; next = *_search_cache.first; } if (inclusive && first->when == start) { x = first->when; y = first->value; /* Move left of cache to this point * (Optimize for immediate call this cycle within range) */ _search_cache.left = x; //++_search_cache.range.first; assert(x >= start); return true; } if (fabs(first->value - next->value) <= 1) { if (next->when > start) { x = next->when; y = next->value; /* Move left of cache to this point * (Optimize for immediate call this cycle within range) */ _search_cache.left = x; //++_search_cache.range.first; assert(inclusive ? x >= start : x > start); return true; } else { return false; } } const double slope = (next->value - first->value) / (double)(next->when - first->when); //cerr << "start y: " << start_y << endl; //y = first->value + (slope * fabs(start - first->when)); y = first->value; if (first->value < next->value) // ramping up y = ceil(y); else // ramping down y = floor(y); x = first->when + (y - first->value) / (double)slope; while ((inclusive && x < start) || (x <= start && y != next->value)) { if (first->value < next->value) // ramping up y += 1.0; else // ramping down y -= 1.0; x = first->when + (y - first->value) / (double)slope; } /*cerr << first->value << " @ " << first->when << " ... " << next->value << " @ " << next->when << " = " << y << " @ " << x << endl;*/ assert( (y >= first->value && y <= next->value) || (y <= first->value && y >= next->value) ); const bool past_start = (inclusive ? x >= start : x > start); if (past_start) { /* Move left of cache to this point * (Optimize for immediate call this cycle within range) */ _search_cache.left = x; assert(inclusive ? x >= start : x > start); return true; } else { return false; } /* No points in the future, so no steps (towards them) in the future */ } else { return false; } } /** @param start Start position in model coordinates. * @param end End position in model coordinates. * @param op 0 = cut, 1 = copy, 2 = clear. */ boost::shared_ptr ControlList::cut_copy_clear (double start, double end, int op) { boost::shared_ptr nal = create (_parameter); iterator s, e; ControlEvent cp (start, 0.0); { Glib::Mutex::Lock lm (_lock); /* first, determine s & e, two iterators that define the range of points affected by this operation */ if ((s = lower_bound (_events.begin(), _events.end(), &cp, time_comparator)) == _events.end()) { return nal; } /* and the last that is at or after `end' */ cp.when = end; e = upper_bound (_events.begin(), _events.end(), &cp, time_comparator); /* if "start" isn't the location of an existing point, evaluate the curve to get a value for the start. Add a point to both the existing event list, and if its not a "clear" operation, to the copy ("nal") as well. Note that the time positions of the points in each list are different because we want the copy ("nal") to have a zero time reference. */ /* before we begin any cut/clear operations, get the value of the curve at "end". */ double end_value = unlocked_eval (end); if ((*s)->when != start) { double val = unlocked_eval (start); if (op == 0) { // cut if (start > _events.front()->when) { _events.insert (s, (new ControlEvent (start, val))); } } if (op != 2) { // ! clear nal->_events.push_back (new ControlEvent (0, val)); } } for (iterator x = s; x != e; ) { /* adjust new points to be relative to start, which has been set to zero. */ if (op != 2) { nal->_events.push_back (new ControlEvent ((*x)->when - start, (*x)->value)); } if (op != 1) { x = _events.erase (x); } else { ++x; } } if (e == _events.end() || (*e)->when != end) { /* only add a boundary point if there is a point after "end" */ if (op == 0 && (e != _events.end() && end < (*e)->when)) { // cut _events.insert (e, new ControlEvent (end, end_value)); } if (op != 2 && (e != _events.end() && end < (*e)->when)) { // cut/copy nal->_events.push_back (new ControlEvent (end - start, end_value)); } } mark_dirty (); } if (op != 1) { maybe_signal_changed (); } return nal; } boost::shared_ptr ControlList::cut (double start, double end) { return cut_copy_clear (start, end, 0); } boost::shared_ptr ControlList::copy (double start, double end) { return cut_copy_clear (start, end, 1); } void ControlList::clear (double start, double end) { cut_copy_clear (start, end, 2); } /** @param pos Position in model coordinates */ bool ControlList::paste (ControlList& alist, double pos, float /*times*/) { if (alist._events.empty()) { return false; } { Glib::Mutex::Lock lm (_lock); iterator where; iterator prev; double end = 0; ControlEvent cp (pos, 0.0); where = upper_bound (_events.begin(), _events.end(), &cp, time_comparator); for (iterator i = alist.begin();i != alist.end(); ++i) { _events.insert (where, new ControlEvent( (*i)->when+pos,( *i)->value)); end = (*i)->when + pos; } /* move all points after the insertion along the timeline by the correct amount. */ while (where != _events.end()) { iterator tmp; if ((*where)->when <= end) { tmp = where; ++tmp; _events.erase(where); where = tmp; } else { break; } } mark_dirty (); } maybe_signal_changed (); return true; } /** Move automation around according to a list of region movements. * @param return true if anything was changed, otherwise false (ie nothing needed changing) */ bool ControlList::move_ranges (const list< RangeMove >& movements) { typedef list< RangeMove > RangeMoveList; { Glib::Mutex::Lock lm (_lock); /* a copy of the events list before we started moving stuff around */ EventList old_events = _events; /* clear the source and destination ranges in the new list */ bool things_erased = false; for (RangeMoveList::const_iterator i = movements.begin (); i != movements.end (); ++i) { if (erase_range_internal (i->from, i->from + i->length, _events)) { things_erased = true; } if (erase_range_internal (i->to, i->to + i->length, _events)) { things_erased = true; } } /* if nothing was erased, there is nothing to do */ if (!things_erased) { return false; } /* copy the events into the new list */ for (RangeMoveList::const_iterator i = movements.begin (); i != movements.end (); ++i) { iterator j = old_events.begin (); const double limit = i->from + i->length; const double dx = i->to - i->from; while (j != old_events.end () && (*j)->when <= limit) { if ((*j)->when >= i->from) { ControlEvent* ev = new ControlEvent (**j); ev->when += dx; _events.push_back (ev); } ++j; } } if (!_frozen) { _events.sort (event_time_less_than); } else { _sort_pending = true; } mark_dirty (); } maybe_signal_changed (); return true; } void ControlList::set_interpolation (InterpolationStyle s) { if (_interpolation == s) { return; } _interpolation = s; InterpolationChanged (s); /* EMIT SIGNAL */ } } // namespace Evoral