/* Copyright (C) 2011-2013 Paul Davis Author: Carl Hetherington This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include "canvas/utils.h" using std::max; using std::min; void ArdourCanvas::color_to_hsv (Color color, double& h, double& s, double& v) { double r, g, b, a; double cmax; double cmin; double delta; color_to_rgba (color, r, g, b, a); if (r > g) { cmax = max (r, b); } else { cmax = max (g, b); } if (r < g) { cmin = min (r, b); } else { cmin = min (g, b); } v = cmax; delta = cmax - cmin; if (cmax == 0) { // r = g = b == 0 ... v is undefined, s = 0 s = 0.0; h = -1.0; } if (delta != 0.0) { if (cmax == r) { h = fmod ((g - b)/delta, 6.0); } else if (cmax == g) { h = ((b - r)/delta) + 2; } else { h = ((r - g)/delta) + 4; } h *= 60.0; } if (delta == 0 || cmax == 0) { s = 0; } else { s = delta / cmax; } } ArdourCanvas::Color ArdourCanvas::hsv_to_color (double h, double s, double v, double a) { s = min (1.0, max (0.0, s)); v = min (1.0, max (0.0, v)); if (s == 0) { // achromatic (grey) return rgba_to_color (v, v, v, a); } h = min (360.0, max (0.0, h)); double c = v * s; double x = c * (1.0 - fabs(fmod(h / 60.0, 2) - 1.0)); double m = v - c; if (h >= 0.0 && h < 60.0) { return rgba_to_color (c + m, x + m, m, a); } else if (h >= 60.0 && h < 120.0) { return rgba_to_color (x + m, c + m, m, a); } else if (h >= 120.0 && h < 180.0) { return rgba_to_color (m, c + m, x + m, a); } else if (h >= 180.0 && h < 240.0) { return rgba_to_color (m, x + m, c + m, a); } else if (h >= 240.0 && h < 300.0) { return rgba_to_color (x + m, m, c + m, a); } else if (h >= 300.0 && h < 360.0) { return rgba_to_color (c + m, m, x + m, a); } return rgba_to_color (m, m, m, a); } void ArdourCanvas::color_to_rgba (Color color, double& r, double& g, double& b, double& a) { r = ((color >> 24) & 0xff) / 255.0; g = ((color >> 16) & 0xff) / 255.0; b = ((color >> 8) & 0xff) / 255.0; a = ((color >> 0) & 0xff) / 255.0; } ArdourCanvas::Color ArdourCanvas::rgba_to_color (double r, double g, double b, double a) { /* clamp to [0 .. 1] range */ r = min (1.0, max (0.0, r)); g = min (1.0, max (0.0, g)); b = min (1.0, max (0.0, b)); a = min (1.0, max (0.0, a)); /* convert to [0..255] range */ unsigned int rc, gc, bc, ac; rc = rint (r * 255.0); gc = rint (g * 255.0); bc = rint (b * 255.0); ac = rint (a * 255.0); /* build-an-integer */ return (rc << 24) | (gc << 16) | (bc << 8) | ac; } void ArdourCanvas::set_source_rgba (Cairo::RefPtr context, Color color) { context->set_source_rgba ( ((color >> 24) & 0xff) / 255.0, ((color >> 16) & 0xff) / 255.0, ((color >> 8) & 0xff) / 255.0, ((color >> 0) & 0xff) / 255.0 ); } ArdourCanvas::Distance ArdourCanvas::distance_to_segment_squared (Duple const & p, Duple const & p1, Duple const & p2, double& t, Duple& at) { static const double kMinSegmentLenSquared = 0.00000001; // adjust to suit. If you use float, you'll probably want something like 0.000001f static const double kEpsilon = 1.0E-14; // adjust to suit. If you use floats, you'll probably want something like 1E-7f double dx = p2.x - p1.x; double dy = p2.y - p1.y; double dp1x = p.x - p1.x; double dp1y = p.y - p1.y; const double segLenSquared = (dx * dx) + (dy * dy); if (segLenSquared >= -kMinSegmentLenSquared && segLenSquared <= kMinSegmentLenSquared) { // segment is a point. at = p1; t = 0.0; return ((dp1x * dp1x) + (dp1y * dp1y)); } // Project a line from p to the segment [p1,p2]. By considering the line // extending the segment, parameterized as p1 + (t * (p2 - p1)), // we find projection of point p onto the line. // It falls where t = [(p - p1) . (p2 - p1)] / |p2 - p1|^2 t = ((dp1x * dx) + (dp1y * dy)) / segLenSquared; if (t < kEpsilon) { // intersects at or to the "left" of first segment vertex (p1.x, p1.y). If t is approximately 0.0, then // intersection is at p1. If t is less than that, then there is no intersection (i.e. p is not within // the 'bounds' of the segment) if (t > -kEpsilon) { // intersects at 1st segment vertex t = 0.0; } // set our 'intersection' point to p1. at = p1; // Note: If you wanted the ACTUAL intersection point of where the projected lines would intersect if // we were doing PointLineDistanceSquared, then qx would be (p1.x + (t * dx)) and qy would be (p1.y + (t * dy)). } else if (t > (1.0 - kEpsilon)) { // intersects at or to the "right" of second segment vertex (p2.x, p2.y). If t is approximately 1.0, then // intersection is at p2. If t is greater than that, then there is no intersection (i.e. p is not within // the 'bounds' of the segment) if (t < (1.0 + kEpsilon)) { // intersects at 2nd segment vertex t = 1.0; } // set our 'intersection' point to p2. at = p2; // Note: If you wanted the ACTUAL intersection point of where the projected lines would intersect if // we were doing PointLineDistanceSquared, then qx would be (p1.x + (t * dx)) and qy would be (p1.y + (t * dy)). } else { // The projection of the point to the point on the segment that is perpendicular succeeded and the point // is 'within' the bounds of the segment. Set the intersection point as that projected point. at = Duple (p1.x + (t * dx), p1.y + (t * dy)); } // return the squared distance from p to the intersection point. Note that we return the squared distance // as an optimization because many times you just need to compare relative distances and the squared values // works fine for that. If you want the ACTUAL distance, just take the square root of this value. double dpqx = p.x - at.x; double dpqy = p.y - at.y; return ((dpqx * dpqx) + (dpqy * dpqy)); }