/* * Copyright (C) 2015-2015 Robin Gareus * Copyright (C) 2013 Paul Davis * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #ifndef PLATFORM_WINDOWS #include #include #endif #include #include "portaudio_backend.h" #include "rt_thread.h" #include "pbd/compose.h" #include "pbd/error.h" #include "pbd/file_utils.h" #include "ardour/filesystem_paths.h" #include "ardour/port_manager.h" #include "i18n.h" #include "win_utils.h" #include "debug.h" using namespace ARDOUR; namespace { const char * const winmme_driver_name = X_("WinMME"); } static std::string s_instance_name; size_t PortAudioBackend::_max_buffer_size = 8192; std::vector PortAudioBackend::_midi_options; std::vector PortAudioBackend::_input_audio_device_status; std::vector PortAudioBackend::_output_audio_device_status; PortAudioBackend::PortAudioBackend (AudioEngine& e, AudioBackendInfo& info) : AudioBackend (e, info) , _pcmio (0) , _run (false) , _active (false) , _freewheel (false) , _measure_latency (false) , m_cycle_count(0) , m_total_deviation_us(0) , m_max_deviation_us(0) , _input_audio_device("") , _output_audio_device("") , _midi_driver_option(_("None")) , _samplerate (48000) , _samples_per_period (1024) , _n_inputs (0) , _n_outputs (0) , _systemic_audio_input_latency (0) , _systemic_audio_output_latency (0) , _dsp_load (0) , _processed_samples (0) , _port_change_flag (false) { _instance_name = s_instance_name; pthread_mutex_init (&_port_callback_mutex, 0); _pcmio = new PortAudioIO (); _midiio = new WinMMEMidiIO (); } PortAudioBackend::~PortAudioBackend () { delete _pcmio; _pcmio = 0; delete _midiio; _midiio = 0; pthread_mutex_destroy (&_port_callback_mutex); } /* AUDIOBACKEND API */ std::string PortAudioBackend::name () const { return X_("PortAudio"); } bool PortAudioBackend::is_realtime () const { return true; } bool PortAudioBackend::requires_driver_selection() const { // we could do this but implementation would need changing /* if (enumerate_drivers().size() == 1) { return false; } */ return true; } std::vector PortAudioBackend::enumerate_drivers () const { DEBUG_AUDIO ("Portaudio: enumerate_drivers\n"); std::vector currently_available; _pcmio->host_api_list (currently_available); return currently_available; } int PortAudioBackend::set_driver (const std::string& name) { _pcmio->set_host_api (name); return 0; } bool PortAudioBackend::use_separate_input_and_output_devices () const { return true; } std::vector PortAudioBackend::enumerate_devices () const { DEBUG_AUDIO ("Portaudio: ERROR enumerate devices should not be called \n"); return std::vector(); } std::vector PortAudioBackend::enumerate_input_devices () const { _pcmio->discover(); _input_audio_device_status.clear(); std::map input_devices; _pcmio->input_device_list(input_devices); for (std::map::const_iterator i = input_devices.begin (); i != input_devices.end(); ++i) { if (_input_audio_device == "") _input_audio_device = i->second; _input_audio_device_status.push_back (DeviceStatus (i->second, true)); } return _input_audio_device_status; } std::vector PortAudioBackend::enumerate_output_devices () const { _pcmio->discover(); _output_audio_device_status.clear(); std::map output_devices; _pcmio->output_device_list(output_devices); for (std::map::const_iterator i = output_devices.begin (); i != output_devices.end(); ++i) { if (_output_audio_device == "") _output_audio_device = i->second; _output_audio_device_status.push_back (DeviceStatus (i->second, true)); } return _output_audio_device_status; } std::vector PortAudioBackend::available_sample_rates (const std::string&) const { DEBUG_AUDIO ("Portaudio: available_sample_rates\n"); std::vector sr; _pcmio->available_sample_rates(name_to_id(_input_audio_device), sr); return sr; } std::vector PortAudioBackend::available_buffer_sizes (const std::string&) const { DEBUG_AUDIO ("Portaudio: available_buffer_sizes\n"); std::vector bs; _pcmio->available_buffer_sizes(name_to_id(_input_audio_device), bs); return bs; } uint32_t PortAudioBackend::available_input_channel_count (const std::string&) const { return 128; // TODO query current device } uint32_t PortAudioBackend::available_output_channel_count (const std::string&) const { return 128; // TODO query current device } bool PortAudioBackend::can_change_sample_rate_when_running () const { return false; } bool PortAudioBackend::can_change_buffer_size_when_running () const { return false; // TODO } int PortAudioBackend::set_device_name (const std::string& d) { DEBUG_AUDIO ("Portaudio: set_device_name should not be called\n"); return 0; } int PortAudioBackend::set_input_device_name (const std::string& d) { DEBUG_AUDIO (string_compose ("Portaudio: set_input_device_name %1\n", d)); _input_audio_device = d; return 0; } int PortAudioBackend::set_output_device_name (const std::string& d) { DEBUG_AUDIO (string_compose ("Portaudio: set_output_device_name %1\n", d)); _output_audio_device = d; return 0; } int PortAudioBackend::set_sample_rate (float sr) { if (sr <= 0) { return -1; } // TODO check if it's in the list of valid SR _samplerate = sr; engine.sample_rate_change (sr); return 0; } int PortAudioBackend::set_buffer_size (uint32_t bs) { if (bs <= 0 || bs >= _max_buffer_size) { return -1; } _samples_per_period = bs; engine.buffer_size_change (bs); return 0; } int PortAudioBackend::set_interleaved (bool yn) { if (!yn) { return 0; } return -1; } int PortAudioBackend::set_input_channels (uint32_t cc) { _n_inputs = cc; return 0; } int PortAudioBackend::set_output_channels (uint32_t cc) { _n_outputs = cc; return 0; } int PortAudioBackend::set_systemic_input_latency (uint32_t sl) { _systemic_audio_input_latency = sl; return 0; } int PortAudioBackend::set_systemic_output_latency (uint32_t sl) { _systemic_audio_output_latency = sl; return 0; } /* Retrieving parameters */ std::string PortAudioBackend::device_name () const { return "Unused"; } std::string PortAudioBackend::input_device_name () const { return _input_audio_device; } std::string PortAudioBackend::output_device_name () const { return _output_audio_device; } float PortAudioBackend::sample_rate () const { return _samplerate; } uint32_t PortAudioBackend::buffer_size () const { return _samples_per_period; } bool PortAudioBackend::interleaved () const { return false; } uint32_t PortAudioBackend::input_channels () const { return _n_inputs; } uint32_t PortAudioBackend::output_channels () const { return _n_outputs; } uint32_t PortAudioBackend::systemic_input_latency () const { return _systemic_audio_input_latency; } uint32_t PortAudioBackend::systemic_output_latency () const { return _systemic_audio_output_latency; } /* MIDI */ std::vector PortAudioBackend::enumerate_midi_options () const { if (_midi_options.empty()) { _midi_options.push_back (winmme_driver_name); _midi_options.push_back (_("None")); } return _midi_options; } int PortAudioBackend::set_midi_option (const std::string& opt) { if (opt != _("None") && opt != winmme_driver_name) { return -1; } DEBUG_MIDI (string_compose ("Setting midi option to %1\n", opt)); _midi_driver_option = opt; return 0; } std::string PortAudioBackend::midi_option () const { return _midi_driver_option; } /* State Control */ static void * pthread_process (void *arg) { PortAudioBackend *d = static_cast(arg); d->main_process_thread (); pthread_exit (0); return 0; } int PortAudioBackend::_start (bool for_latency_measurement) { if (!_active && _run) { // recover from 'halted', reap threads stop(); } if (_active || _run) { PBD::error << _("PortAudioBackend: already active.") << endmsg; return -1; } if (_ports.size()) { PBD::warning << _("PortAudioBackend: recovering from unclean shutdown, port registry is not empty.") << endmsg; _system_inputs.clear(); _system_outputs.clear(); _system_midi_in.clear(); _system_midi_out.clear(); _ports.clear(); } /* reset internal state */ _dsp_load = 0; _freewheeling = false; _freewheel = false; _pcmio->pcm_setup (name_to_id(_input_audio_device), name_to_id(_output_audio_device), _samplerate, _samples_per_period); switch (_pcmio->state ()) { case 0: /* OK */ break; case -1: PBD::error << _("PortAudioBackend: failed to open device.") << endmsg; break; default: PBD::error << _("PortAudioBackend: initialization failed.") << endmsg; break; } if (_pcmio->state ()) { return -1; } if (_n_outputs != _pcmio->n_playback_channels ()) { _n_outputs = _pcmio->n_playback_channels (); PBD::info << _("PortAudioBackend: adjusted output channel count to match device.") << endmsg; } if (_n_inputs != _pcmio->n_capture_channels ()) { _n_inputs = _pcmio->n_capture_channels (); PBD::info << _("PortAudioBackend: adjusted input channel count to match device.") << endmsg; } #if 0 if (_pcmio->samples_per_period() != _samples_per_period) { _samples_per_period = _pcmio->samples_per_period(); PBD::warning << _("PortAudioBackend: samples per period does not match.") << endmsg; } #endif if (_pcmio->sample_rate() != _samplerate) { _samplerate = _pcmio->sample_rate(); engine.sample_rate_change (_samplerate); PBD::warning << _("PortAudioBackend: sample rate does not match.") << endmsg; } _measure_latency = for_latency_measurement; _run = true; _port_change_flag = false; if (_midi_driver_option == winmme_driver_name) { _midiio->set_enabled(true); //_midiio->set_port_changed_callback(midi_port_change, this); _midiio->start(); // triggers port discovery, callback coremidi_rediscover() } m_cycle_timer.set_samplerate(_samplerate); m_cycle_timer.set_samples_per_cycle(_samples_per_period); DEBUG_MIDI ("Registering MIDI ports\n"); if (register_system_midi_ports () != 0) { PBD::error << _ ("PortAudioBackend: failed to register system midi ports.") << endmsg; _run = false; return -1; } DEBUG_AUDIO ("Registering Audio ports\n"); if (register_system_audio_ports()) { PBD::error << _("PortAudioBackend: failed to register system audio ports.") << endmsg; _run = false; return -1; } engine.sample_rate_change (_samplerate); engine.buffer_size_change (_samples_per_period); if (engine.reestablish_ports ()) { PBD::error << _("PortAudioBackend: Could not re-establish ports.") << endmsg; _run = false; return -1; } engine.reconnect_ports (); _run = true; _port_change_flag = false; if (_realtime_pthread_create (SCHED_FIFO, -20, 100000, &_main_thread, pthread_process, this)) { if (pthread_create (&_main_thread, NULL, pthread_process, this)) { PBD::error << _("PortAudioBackend: failed to create process thread.") << endmsg; _run = false; return -1; } else { PBD::warning << _("PortAudioBackend: cannot acquire realtime permissions.") << endmsg; } } int timeout = 5000; while (!_active && --timeout > 0) { Glib::usleep (1000); } if (timeout == 0 || !_active) { PBD::error << _("PortAudioBackend: failed to start.") << endmsg; _pcmio->pcm_stop(); _run = false; unregister_ports(); _active = false; return -1; } return 0; } int PortAudioBackend::stop () { void *status; if (!_run) { return 0; } _run = false; if (pthread_join (_main_thread, &status)) { PBD::error << _("PortAudioBackend: failed to terminate.") << endmsg; return -1; } unregister_ports(); return (_active == false) ? 0 : -1; } int PortAudioBackend::freewheel (bool onoff) { if (onoff == _freewheeling) { return 0; } _freewheeling = onoff; return 0; } float PortAudioBackend::dsp_load () const { return 100.f * _dsp_load; } size_t PortAudioBackend::raw_buffer_size (DataType t) { switch (t) { case DataType::AUDIO: return _samples_per_period * sizeof(Sample); case DataType::MIDI: return _max_buffer_size; // XXX not really limited } return 0; } /* Process time */ framepos_t PortAudioBackend::sample_time () { return _processed_samples; } framepos_t PortAudioBackend::sample_time_at_cycle_start () { return _processed_samples; } pframes_t PortAudioBackend::samples_since_cycle_start () { if (!_active || !_run || _freewheeling || _freewheel) { return 0; } if (!m_cycle_timer.valid()) { return 0; } return m_cycle_timer.samples_since_cycle_start (utils::get_microseconds()); } int PortAudioBackend::name_to_id(std::string device_name) const { uint32_t device_id = UINT32_MAX; std::map devices; _pcmio->input_device_list(devices); _pcmio->output_device_list(devices); for (std::map::const_iterator i = devices.begin (); i != devices.end(); ++i) { if (i->second == device_name) { device_id = i->first; break; } } return device_id; } void * PortAudioBackend::portaudio_process_thread (void *arg) { ThreadData* td = reinterpret_cast (arg); boost::function f = td->f; delete td; f (); return 0; } int PortAudioBackend::create_process_thread (boost::function func) { pthread_t thread_id; pthread_attr_t attr; size_t stacksize = 100000; ThreadData* td = new ThreadData (this, func, stacksize); if (_realtime_pthread_create (SCHED_FIFO, -21, stacksize, &thread_id, portaudio_process_thread, td)) { pthread_attr_init (&attr); pthread_attr_setstacksize (&attr, stacksize); if (pthread_create (&thread_id, &attr, portaudio_process_thread, td)) { PBD::error << _("AudioEngine: cannot create process thread.") << endmsg; pthread_attr_destroy (&attr); return -1; } pthread_attr_destroy (&attr); } _threads.push_back (thread_id); return 0; } int PortAudioBackend::join_process_threads () { int rv = 0; for (std::vector::const_iterator i = _threads.begin (); i != _threads.end (); ++i) { void *status; if (pthread_join (*i, &status)) { PBD::error << _("AudioEngine: cannot terminate process thread.") << endmsg; rv -= 1; } } _threads.clear (); return rv; } bool PortAudioBackend::in_process_thread () { if (pthread_equal (_main_thread, pthread_self()) != 0) { return true; } for (std::vector::const_iterator i = _threads.begin (); i != _threads.end (); ++i) { if (pthread_equal (*i, pthread_self ()) != 0) { return true; } } return false; } uint32_t PortAudioBackend::process_thread_count () { return _threads.size (); } void PortAudioBackend::update_latencies () { // trigger latency callback in RT thread (locked graph) port_connect_add_remove_callback(); } /* PORTENGINE API */ void* PortAudioBackend::private_handle () const { return NULL; } const std::string& PortAudioBackend::my_name () const { return _instance_name; } bool PortAudioBackend::available () const { return _run && _active; } uint32_t PortAudioBackend::port_name_size () const { return 256; } int PortAudioBackend::set_port_name (PortEngine::PortHandle port, const std::string& name) { if (!valid_port (port)) { PBD::error << _("PortAudioBackend::set_port_name: Invalid Port(s)") << endmsg; return -1; } return static_cast(port)->set_name (_instance_name + ":" + name); } std::string PortAudioBackend::get_port_name (PortEngine::PortHandle port) const { if (!valid_port (port)) { PBD::error << _("PortAudioBackend::get_port_name: Invalid Port(s)") << endmsg; return std::string (); } return static_cast(port)->name (); } PortEngine::PortHandle PortAudioBackend::get_port_by_name (const std::string& name) const { PortHandle port = (PortHandle) find_port (name); return port; } int PortAudioBackend::get_ports ( const std::string& port_name_pattern, DataType type, PortFlags flags, std::vector& port_names) const { int rv = 0; regex_t port_regex; bool use_regexp = false; if (port_name_pattern.size () > 0) { if (!regcomp (&port_regex, port_name_pattern.c_str (), REG_EXTENDED|REG_NOSUB)) { use_regexp = true; } } for (size_t i = 0; i < _ports.size (); ++i) { PamPort* port = _ports[i]; if ((port->type () == type) && flags == (port->flags () & flags)) { if (!use_regexp || !regexec (&port_regex, port->name ().c_str (), 0, NULL, 0)) { port_names.push_back (port->name ()); ++rv; } } } if (use_regexp) { regfree (&port_regex); } return rv; } DataType PortAudioBackend::port_data_type (PortEngine::PortHandle port) const { if (!valid_port (port)) { return DataType::NIL; } return static_cast(port)->type (); } PortEngine::PortHandle PortAudioBackend::register_port ( const std::string& name, ARDOUR::DataType type, ARDOUR::PortFlags flags) { if (name.size () == 0) { return 0; } if (flags & IsPhysical) { return 0; } return add_port (_instance_name + ":" + name, type, flags); } PortEngine::PortHandle PortAudioBackend::add_port ( const std::string& name, ARDOUR::DataType type, ARDOUR::PortFlags flags) { assert(name.size ()); if (find_port (name)) { PBD::error << _("PortAudioBackend::register_port: Port already exists:") << " (" << name << ")" << endmsg; return 0; } PamPort* port = NULL; switch (type) { case DataType::AUDIO: port = new PortAudioPort (*this, name, flags); break; case DataType::MIDI: port = new PortMidiPort (*this, name, flags); break; default: PBD::error << _("PortAudioBackend::register_port: Invalid Data Type.") << endmsg; return 0; } _ports.push_back (port); return port; } void PortAudioBackend::unregister_port (PortEngine::PortHandle port_handle) { if (!_run) { return; } PamPort* port = static_cast(port_handle); std::vector::iterator i = std::find (_ports.begin (), _ports.end (), static_cast(port_handle)); if (i == _ports.end ()) { PBD::error << _("PortAudioBackend::unregister_port: Failed to find port") << endmsg; return; } disconnect_all(port_handle); _ports.erase (i); delete port; } int PortAudioBackend::register_system_audio_ports() { LatencyRange lr; const uint32_t a_ins = _n_inputs; const uint32_t a_out = _n_outputs; // XXX PA reported stream latencies don't match measurements const uint32_t portaudio_reported_input_latency = _samples_per_period ; // _pcmio->capture_latency(); const uint32_t portaudio_reported_output_latency = /* _samples_per_period + */ _pcmio->playback_latency(); /* audio ports */ lr.min = lr.max = portaudio_reported_input_latency + (_measure_latency ? 0 : _systemic_audio_input_latency); for (uint32_t i = 0; i < a_ins; ++i) { char tmp[64]; snprintf(tmp, sizeof(tmp), "system:capture_%d", i+1); PortHandle p = add_port(std::string(tmp), DataType::AUDIO, static_cast(IsOutput | IsPhysical | IsTerminal)); if (!p) return -1; set_latency_range (p, false, lr); _system_inputs.push_back(static_cast(p)); } lr.min = lr.max = portaudio_reported_output_latency + (_measure_latency ? 0 : _systemic_audio_output_latency); for (uint32_t i = 0; i < a_out; ++i) { char tmp[64]; snprintf(tmp, sizeof(tmp), "system:playback_%d", i+1); PortHandle p = add_port(std::string(tmp), DataType::AUDIO, static_cast(IsInput | IsPhysical | IsTerminal)); if (!p) return -1; set_latency_range (p, true, lr); _system_outputs.push_back(static_cast(p)); } return 0; } int PortAudioBackend::register_system_midi_ports() { if (_midi_driver_option == _("None")) { DEBUG_MIDI ("No MIDI backend selected, not system midi ports available\n"); return 0; } LatencyRange lr; lr.min = lr.max = _samples_per_period; const std::vector inputs = _midiio->get_inputs(); for (std::vector::const_iterator i = inputs.begin (); i != inputs.end (); ++i) { std::string port_name = "system_midi:" + (*i)->name() + " capture"; PortHandle p = add_port (port_name, DataType::MIDI, static_cast(IsOutput | IsPhysical | IsTerminal)); if (!p) return -1; set_latency_range (p, false, lr); _system_midi_in.push_back (static_cast(p)); DEBUG_MIDI (string_compose ("Registered MIDI input port: %1\n", port_name)); } const std::vector outputs = _midiio->get_outputs(); for (std::vector::const_iterator i = outputs.begin (); i != outputs.end (); ++i) { std::string port_name = "system_midi:" + (*i)->name() + " playback"; PortHandle p = add_port (port_name, DataType::MIDI, static_cast(IsInput | IsPhysical | IsTerminal)); if (!p) return -1; set_latency_range (p, false, lr); static_cast(p)->set_n_periods(2); _system_midi_out.push_back (static_cast(p)); DEBUG_MIDI (string_compose ("Registered MIDI output port: %1\n", port_name)); } return 0; } void PortAudioBackend::unregister_ports (bool system_only) { size_t i = 0; _system_inputs.clear(); _system_outputs.clear(); _system_midi_in.clear(); _system_midi_out.clear(); while (i < _ports.size ()) { PamPort* port = _ports[i]; if (! system_only || (port->is_physical () && port->is_terminal ())) { port->disconnect_all (); delete port; _ports.erase (_ports.begin() + i); } else { ++i; } } } int PortAudioBackend::connect (const std::string& src, const std::string& dst) { PamPort* src_port = find_port (src); PamPort* dst_port = find_port (dst); if (!src_port) { PBD::error << _("PortAudioBackend::connect: Invalid Source port:") << " (" << src <<")" << endmsg; return -1; } if (!dst_port) { PBD::error << _("PortAudioBackend::connect: Invalid Destination port:") << " (" << dst <<")" << endmsg; return -1; } return src_port->connect (dst_port); } int PortAudioBackend::disconnect (const std::string& src, const std::string& dst) { PamPort* src_port = find_port (src); PamPort* dst_port = find_port (dst); if (!src_port || !dst_port) { PBD::error << _("PortAudioBackend::disconnect: Invalid Port(s)") << endmsg; return -1; } return src_port->disconnect (dst_port); } int PortAudioBackend::connect (PortEngine::PortHandle src, const std::string& dst) { PamPort* dst_port = find_port (dst); if (!valid_port (src)) { PBD::error << _("PortAudioBackend::connect: Invalid Source Port Handle") << endmsg; return -1; } if (!dst_port) { PBD::error << _("PortAudioBackend::connect: Invalid Destination Port") << " (" << dst << ")" << endmsg; return -1; } return static_cast(src)->connect (dst_port); } int PortAudioBackend::disconnect (PortEngine::PortHandle src, const std::string& dst) { PamPort* dst_port = find_port (dst); if (!valid_port (src) || !dst_port) { PBD::error << _("PortAudioBackend::disconnect: Invalid Port(s)") << endmsg; return -1; } return static_cast(src)->disconnect (dst_port); } int PortAudioBackend::disconnect_all (PortEngine::PortHandle port) { if (!valid_port (port)) { PBD::error << _("PortAudioBackend::disconnect_all: Invalid Port") << endmsg; return -1; } static_cast(port)->disconnect_all (); return 0; } bool PortAudioBackend::connected (PortEngine::PortHandle port, bool /* process_callback_safe*/) { if (!valid_port (port)) { PBD::error << _("PortAudioBackend::disconnect_all: Invalid Port") << endmsg; return false; } return static_cast(port)->is_connected (); } bool PortAudioBackend::connected_to (PortEngine::PortHandle src, const std::string& dst, bool /*process_callback_safe*/) { PamPort* dst_port = find_port (dst); if (!valid_port (src) || !dst_port) { PBD::error << _("PortAudioBackend::connected_to: Invalid Port") << endmsg; return false; } return static_cast(src)->is_connected (dst_port); } bool PortAudioBackend::physically_connected (PortEngine::PortHandle port, bool /*process_callback_safe*/) { if (!valid_port (port)) { PBD::error << _("PortAudioBackend::physically_connected: Invalid Port") << endmsg; return false; } return static_cast(port)->is_physically_connected (); } int PortAudioBackend::get_connections (PortEngine::PortHandle port, std::vector& names, bool /*process_callback_safe*/) { if (!valid_port (port)) { PBD::error << _("PortAudioBackend::get_connections: Invalid Port") << endmsg; return -1; } assert (0 == names.size ()); const std::vector& connected_ports = static_cast(port)->get_connections (); for (std::vector::const_iterator i = connected_ports.begin (); i != connected_ports.end (); ++i) { names.push_back ((*i)->name ()); } return (int)names.size (); } /* MIDI */ int PortAudioBackend::midi_event_get ( pframes_t& timestamp, size_t& size, uint8_t** buf, void* port_buffer, uint32_t event_index) { if (!buf || !port_buffer) return -1; PortMidiBuffer& source = * static_cast(port_buffer); if (event_index >= source.size ()) { return -1; } PortMidiEvent * const event = source[event_index].get (); timestamp = event->timestamp (); size = event->size (); *buf = event->data (); return 0; } int PortAudioBackend::midi_event_put ( void* port_buffer, pframes_t timestamp, const uint8_t* buffer, size_t size) { if (!buffer || !port_buffer) return -1; PortMidiBuffer& dst = * static_cast(port_buffer); if (dst.size () && (pframes_t)dst.back ()->timestamp () > timestamp) { // nevermind, ::get_buffer() sorts events DEBUG_MIDI (string_compose ("PortMidiBuffer: unordered event: %1 > %2\n", (pframes_t)dst.back ()->timestamp (), timestamp)); } dst.push_back (boost::shared_ptr(new PortMidiEvent (timestamp, buffer, size))); return 0; } uint32_t PortAudioBackend::get_midi_event_count (void* port_buffer) { if (!port_buffer) return 0; return static_cast(port_buffer)->size (); } void PortAudioBackend::midi_clear (void* port_buffer) { if (!port_buffer) return; PortMidiBuffer * buf = static_cast(port_buffer); assert (buf); buf->clear (); } /* Monitoring */ bool PortAudioBackend::can_monitor_input () const { return false; } int PortAudioBackend::request_input_monitoring (PortEngine::PortHandle, bool) { return -1; } int PortAudioBackend::ensure_input_monitoring (PortEngine::PortHandle, bool) { return -1; } bool PortAudioBackend::monitoring_input (PortEngine::PortHandle) { return false; } /* Latency management */ void PortAudioBackend::set_latency_range (PortEngine::PortHandle port, bool for_playback, LatencyRange latency_range) { if (!valid_port (port)) { PBD::error << _("PamPort::set_latency_range (): invalid port.") << endmsg; } static_cast(port)->set_latency_range (latency_range, for_playback); } LatencyRange PortAudioBackend::get_latency_range (PortEngine::PortHandle port, bool for_playback) { LatencyRange r; if (!valid_port (port)) { PBD::error << _("PamPort::get_latency_range (): invalid port.") << endmsg; r.min = 0; r.max = 0; return r; } PamPort* p = static_cast(port); assert(p); r = p->latency_range (for_playback); // TODO MIDI if (p->is_physical() && p->is_terminal() && p->type() == DataType::AUDIO) { if (p->is_input() && for_playback) { r.min += _samples_per_period; r.max += _samples_per_period; } if (p->is_output() && !for_playback) { r.min += _samples_per_period; r.max += _samples_per_period; } } return r; } /* Discovering physical ports */ bool PortAudioBackend::port_is_physical (PortEngine::PortHandle port) const { if (!valid_port (port)) { PBD::error << _("PamPort::port_is_physical (): invalid port.") << endmsg; return false; } return static_cast(port)->is_physical (); } void PortAudioBackend::get_physical_outputs (DataType type, std::vector& port_names) { for (size_t i = 0; i < _ports.size (); ++i) { PamPort* port = _ports[i]; if ((port->type () == type) && port->is_input () && port->is_physical ()) { port_names.push_back (port->name ()); } } } void PortAudioBackend::get_physical_inputs (DataType type, std::vector& port_names) { for (size_t i = 0; i < _ports.size (); ++i) { PamPort* port = _ports[i]; if ((port->type () == type) && port->is_output () && port->is_physical ()) { port_names.push_back (port->name ()); } } } ChanCount PortAudioBackend::n_physical_outputs () const { int n_midi = 0; int n_audio = 0; for (size_t i = 0; i < _ports.size (); ++i) { PamPort* port = _ports[i]; if (port->is_output () && port->is_physical ()) { switch (port->type ()) { case DataType::AUDIO: ++n_audio; break; case DataType::MIDI: ++n_midi; break; default: break; } } } ChanCount cc; cc.set (DataType::AUDIO, n_audio); cc.set (DataType::MIDI, n_midi); return cc; } ChanCount PortAudioBackend::n_physical_inputs () const { int n_midi = 0; int n_audio = 0; for (size_t i = 0; i < _ports.size (); ++i) { PamPort* port = _ports[i]; if (port->is_input () && port->is_physical ()) { switch (port->type ()) { case DataType::AUDIO: ++n_audio; break; case DataType::MIDI: ++n_midi; break; default: break; } } } ChanCount cc; cc.set (DataType::AUDIO, n_audio); cc.set (DataType::MIDI, n_midi); return cc; } /* Getting access to the data buffer for a port */ void* PortAudioBackend::get_buffer (PortEngine::PortHandle port, pframes_t nframes) { if (!port || !valid_port (port)) return NULL; return static_cast(port)->get_buffer (nframes); } void * PortAudioBackend::main_process_thread () { AudioEngine::thread_init_callback (this); _active = true; _processed_samples = 0; uint64_t clock1, clock2; int64_t min_elapsed_us = 1000000; int64_t max_elapsed_us = 0; const int64_t nomial_time = 1e6 * _samples_per_period / _samplerate; // const int64_t nomial_time = m_cycle_timer.get_length_us(); manager.registration_callback(); manager.graph_order_callback(); if (_pcmio->pcm_start()) { _pcmio->pcm_stop (); _active = false; engine.halted_callback("PortAudio I/O error."); } while (_run) { if (_freewheeling != _freewheel) { _freewheel = _freewheeling; engine.freewheel_callback (_freewheel); } if (!_freewheel) { switch (_pcmio->next_cycle (_samples_per_period)) { case 0: // OK break; case 1: DEBUG_AUDIO ("PortAudio: Xrun\n"); engine.Xrun (); break; default: PBD::error << _("PortAudioBackend: I/O error. Audio Process Terminated.") << endmsg; break; } uint32_t i = 0; clock1 = utils::get_microseconds (); /* get audio */ i = 0; for (std::vector::const_iterator it = _system_inputs.begin (); it != _system_inputs.end (); ++it, ++i) { _pcmio->get_capture_channel (i, (float*)((*it)->get_buffer(_samples_per_period)), _samples_per_period); } /* de-queue incoming midi*/ i=0; for (std::vector::const_iterator it = _system_midi_in.begin (); it != _system_midi_in.end (); ++it, ++i) { PortMidiBuffer* mbuf = static_cast((*it)->get_buffer(0)); mbuf->clear(); uint64_t timestamp; pframes_t sample_offset; uint8_t data[256]; size_t size = sizeof(data); while (_midiio->dequeue_input_event (i, m_cycle_timer.get_start (), m_cycle_timer.get_next_start (), timestamp, data, size)) { sample_offset = m_cycle_timer.samples_since_cycle_start (timestamp); midi_event_put (mbuf, sample_offset, data, size); DEBUG_MIDI (string_compose ("Dequeuing incoming MIDI data for device: %1 " "sample_offset: %2 timestamp: %3, size: %4\n", _midiio->get_inputs ()[i]->name (), sample_offset, timestamp, size)); size = sizeof(data); } } /* clear output buffers */ for (std::vector::const_iterator it = _system_outputs.begin (); it != _system_outputs.end (); ++it) { memset ((*it)->get_buffer (_samples_per_period), 0, _samples_per_period * sizeof (Sample)); } m_last_cycle_start = m_cycle_timer.get_start (); m_cycle_timer.reset_start(utils::get_microseconds()); m_cycle_count++; uint64_t cycle_diff_us = (m_cycle_timer.get_start () - m_last_cycle_start); int64_t deviation_us = (cycle_diff_us - m_cycle_timer.get_length_us()); m_total_deviation_us += std::abs(deviation_us); m_max_deviation_us = std::max (m_max_deviation_us, (uint64_t)std::abs (deviation_us)); if ((m_cycle_count % 1000) == 0) { uint64_t mean_deviation_us = m_total_deviation_us / m_cycle_count; DEBUG_TIMING ( string_compose ("Mean avg cycle deviation: %1(ms), max %2(ms)\n", mean_deviation_us * 1e-3, m_max_deviation_us * 1e-3)); } if (std::abs(deviation_us) > m_cycle_timer.get_length_us()) { DEBUG_TIMING (string_compose ( "time between process(ms): %1, Est(ms): %2, Dev(ms): %3\n", cycle_diff_us * 1e-3, m_cycle_timer.get_length_us () * 1e-3, deviation_us * 1e-3)); } /* call engine process callback */ if (engine.process_callback (_samples_per_period)) { _pcmio->pcm_stop (); _active = false; return 0; } /* mixdown midi */ for (std::vector::iterator it = _system_midi_out.begin (); it != _system_midi_out.end (); ++it) { static_cast(*it)->next_period(); } /* queue outgoing midi */ i = 0; for (std::vector::const_iterator it = _system_midi_out.begin (); it != _system_midi_out.end (); ++it, ++i) { const PortMidiBuffer* src = static_cast(*it)->const_buffer(); for (PortMidiBuffer::const_iterator mit = src->begin (); mit != src->end (); ++mit) { uint64_t timestamp = m_cycle_timer.timestamp_from_sample_offset ((*mit)->timestamp ()); DEBUG_MIDI ( string_compose ("Queuing outgoing MIDI data for device: " "%1 sample_offset: %2 timestamp: %3, size: %4\n", _midiio->get_outputs ()[i]->name (), (*mit)->timestamp (), timestamp, (*mit)->size ())); _midiio->enqueue_output_event ( i, timestamp, (*mit)->data (), (*mit)->size ()); } } /* write back audio */ i = 0; for (std::vector::const_iterator it = _system_outputs.begin (); it != _system_outputs.end (); ++it, ++i) { _pcmio->set_playback_channel (i, (float const*)(*it)->get_buffer (_samples_per_period), _samples_per_period); } _processed_samples += _samples_per_period; /* calculate DSP load */ clock2 = utils::get_microseconds (); const int64_t elapsed_time = clock2 - clock1; _dsp_load = elapsed_time / (float) nomial_time; max_elapsed_us = std::max (elapsed_time, max_elapsed_us); min_elapsed_us = std::min (elapsed_time, min_elapsed_us); if ((m_cycle_count % 1000) == 0) { DEBUG_TIMING ( string_compose ("Elapsed process time(usecs) max: %1, min: %2\n", max_elapsed_us, min_elapsed_us)); } } else { // Freewheelin' // zero audio input buffers for (std::vector::const_iterator it = _system_inputs.begin (); it != _system_inputs.end (); ++it) { memset ((*it)->get_buffer (_samples_per_period), 0, _samples_per_period * sizeof (Sample)); } clock1 = utils::get_microseconds (); // TODO clear midi or stop midi recv when entering fwheelin' if (engine.process_callback (_samples_per_period)) { _pcmio->pcm_stop (); _active = false; return 0; } // drop all outgoing MIDI messages for (std::vector::const_iterator it = _system_midi_out.begin (); it != _system_midi_out.end (); ++it) { void *bptr = (*it)->get_buffer(0); midi_clear(bptr); } _dsp_load = 1.0; Glib::usleep (100); // don't hog cpu } bool connections_changed = false; bool ports_changed = false; if (!pthread_mutex_trylock (&_port_callback_mutex)) { if (_port_change_flag) { ports_changed = true; _port_change_flag = false; } if (!_port_connection_queue.empty ()) { connections_changed = true; } while (!_port_connection_queue.empty ()) { PortConnectData *c = _port_connection_queue.back (); manager.connect_callback (c->a, c->b, c->c); _port_connection_queue.pop_back (); delete c; } pthread_mutex_unlock (&_port_callback_mutex); } if (ports_changed) { manager.registration_callback(); } if (connections_changed) { manager.graph_order_callback(); } if (connections_changed || ports_changed) { engine.latency_callback(false); engine.latency_callback(true); } } _pcmio->pcm_stop (); _active = false; if (_run) { engine.halted_callback("PortAudio I/O error."); } return 0; } /******************************************************************************/ static boost::shared_ptr _instance; static boost::shared_ptr backend_factory (AudioEngine& e); static int instantiate (const std::string& arg1, const std::string& /* arg2 */); static int deinstantiate (); static bool already_configured (); static bool available (); static ARDOUR::AudioBackendInfo _descriptor = { "PortAudio", instantiate, deinstantiate, backend_factory, already_configured, available }; static boost::shared_ptr backend_factory (AudioEngine& e) { if (!_instance) { _instance.reset (new PortAudioBackend (e, _descriptor)); } return _instance; } static int instantiate (const std::string& arg1, const std::string& /* arg2 */) { s_instance_name = arg1; return 0; } static int deinstantiate () { _instance.reset (); return 0; } static bool already_configured () { return false; } static bool available () { return true; } extern "C" ARDOURBACKEND_API ARDOUR::AudioBackendInfo* descriptor () { return &_descriptor; } /******************************************************************************/ PamPort::PamPort (PortAudioBackend &b, const std::string& name, PortFlags flags) : _osx_backend (b) , _name (name) , _flags (flags) { _capture_latency_range.min = 0; _capture_latency_range.max = 0; _playback_latency_range.min = 0; _playback_latency_range.max = 0; } PamPort::~PamPort () { disconnect_all (); } int PamPort::connect (PamPort *port) { if (!port) { PBD::error << _("PamPort::connect (): invalid (null) port") << endmsg; return -1; } if (type () != port->type ()) { PBD::error << _("PamPort::connect (): wrong port-type") << endmsg; return -1; } if (is_output () && port->is_output ()) { PBD::error << _("PamPort::connect (): cannot inter-connect output ports.") << endmsg; return -1; } if (is_input () && port->is_input ()) { PBD::error << _("PamPort::connect (): cannot inter-connect input ports.") << endmsg; return -1; } if (this == port) { PBD::error << _("PamPort::connect (): cannot self-connect ports.") << endmsg; return -1; } if (is_connected (port)) { #if 0 // don't bother to warn about this for now. just ignore it PBD::error << _("PamPort::connect (): ports are already connected:") << " (" << name () << ") -> (" << port->name () << ")" << endmsg; #endif return -1; } _connect (port, true); return 0; } void PamPort::_connect (PamPort *port, bool callback) { _connections.push_back (port); if (callback) { port->_connect (this, false); _osx_backend.port_connect_callback (name(), port->name(), true); } } int PamPort::disconnect (PamPort *port) { if (!port) { PBD::error << _("PamPort::disconnect (): invalid (null) port") << endmsg; return -1; } if (!is_connected (port)) { PBD::error << _("PamPort::disconnect (): ports are not connected:") << " (" << name () << ") -> (" << port->name () << ")" << endmsg; return -1; } _disconnect (port, true); return 0; } void PamPort::_disconnect (PamPort *port, bool callback) { std::vector::iterator it = std::find (_connections.begin (), _connections.end (), port); assert (it != _connections.end ()); _connections.erase (it); if (callback) { port->_disconnect (this, false); _osx_backend.port_connect_callback (name(), port->name(), false); } } void PamPort::disconnect_all () { while (!_connections.empty ()) { _connections.back ()->_disconnect (this, false); _osx_backend.port_connect_callback (name(), _connections.back ()->name(), false); _connections.pop_back (); } } bool PamPort::is_connected (const PamPort *port) const { return std::find (_connections.begin (), _connections.end (), port) != _connections.end (); } bool PamPort::is_physically_connected () const { for (std::vector::const_iterator it = _connections.begin (); it != _connections.end (); ++it) { if ((*it)->is_physical ()) { return true; } } return false; } /******************************************************************************/ PortAudioPort::PortAudioPort (PortAudioBackend &b, const std::string& name, PortFlags flags) : PamPort (b, name, flags) { memset (_buffer, 0, sizeof (_buffer)); #ifndef PLATFORM_WINDOWS mlock(_buffer, sizeof (_buffer)); #endif } PortAudioPort::~PortAudioPort () { } void* PortAudioPort::get_buffer (pframes_t n_samples) { if (is_input ()) { std::vector::const_iterator it = get_connections ().begin (); if (it == get_connections ().end ()) { memset (_buffer, 0, n_samples * sizeof (Sample)); } else { PortAudioPort const * source = static_cast(*it); assert (source && source->is_output ()); memcpy (_buffer, source->const_buffer (), n_samples * sizeof (Sample)); while (++it != get_connections ().end ()) { source = static_cast(*it); assert (source && source->is_output ()); Sample* dst = buffer (); const Sample* src = source->const_buffer (); for (uint32_t s = 0; s < n_samples; ++s, ++dst, ++src) { *dst += *src; } } } } return _buffer; } PortMidiPort::PortMidiPort (PortAudioBackend &b, const std::string& name, PortFlags flags) : PamPort (b, name, flags) , _n_periods (1) , _bufperiod (0) { _buffer[0].clear (); _buffer[1].clear (); } PortMidiPort::~PortMidiPort () { } struct MidiEventSorter { bool operator() (const boost::shared_ptr& a, const boost::shared_ptr& b) { return *a < *b; } }; void* PortMidiPort::get_buffer (pframes_t /* nframes */) { if (is_input ()) { (_buffer[_bufperiod]).clear (); for (std::vector::const_iterator i = get_connections ().begin (); i != get_connections ().end (); ++i) { const PortMidiBuffer * src = static_cast(*i)->const_buffer (); for (PortMidiBuffer::const_iterator it = src->begin (); it != src->end (); ++it) { (_buffer[_bufperiod]).push_back (boost::shared_ptr(new PortMidiEvent (**it))); } } std::sort ((_buffer[_bufperiod]).begin (), (_buffer[_bufperiod]).end (), MidiEventSorter()); } return &(_buffer[_bufperiod]); } PortMidiEvent::PortMidiEvent (const pframes_t timestamp, const uint8_t* data, size_t size) : _size (size) , _timestamp (timestamp) , _data (0) { if (size > 0) { _data = (uint8_t*) malloc (size); memcpy (_data, data, size); } } PortMidiEvent::PortMidiEvent (const PortMidiEvent& other) : _size (other.size ()) , _timestamp (other.timestamp ()) , _data (0) { if (other.size () && other.const_data ()) { _data = (uint8_t*) malloc (other.size ()); memcpy (_data, other.const_data (), other.size ()); } }; PortMidiEvent::~PortMidiEvent () { free (_data); };