/* * Copyright (C) 2014 Robin Gareus * Copyright (C) 2013 Paul Davis * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include "asio_backend.h" #include "rt_thread.h" #include "pbd/compose.h" #include "pbd/error.h" #include "pbd/file_utils.h" #include "ardour/filesystem_paths.h" #include "ardour/port_manager.h" #include "i18n.h" using namespace ARDOUR; static std::string s_instance_name; size_t ASIOBackend::_max_buffer_size = 8192; std::vector ASIOBackend::_midi_options; std::vector ASIOBackend::_audio_device_status; /* static class instance access */ static void hw_changed_callback_ptr (void *arg) { ASIOBackend *d = static_cast (arg); d->hw_changed_callback(); } static void error_callback_ptr (void *arg) { ASIOBackend *d = static_cast (arg); d->error_callback(); } static void xrun_callback_ptr (void *arg) { ASIOBackend *d = static_cast (arg); d->xrun_callback(); } static void buffer_size_callback_ptr (void *arg) { ASIOBackend *d = static_cast (arg); d->buffer_size_callback(); } static void sample_rate_callback_ptr (void *arg) { ASIOBackend *d = static_cast (arg); d->sample_rate_callback(); } ASIOBackend::ASIOBackend (AudioEngine& e, AudioBackendInfo& info) : AudioBackend (e, info) , _run (false) , _active_cb (false) , _active_fw (false) , _freewheeling (false) , _freewheel (false) , _freewheel_ack (false) , _reinit_thread_callback (false) , _measure_latency (false) , _last_process_start (0) , _audio_device("") , _midi_driver_option(_("None")) , _samplerate (48000) , _samples_per_period (1024) , _n_inputs (0) , _n_outputs (0) , _systemic_audio_input_latency (0) , _systemic_audio_output_latency (0) , _dsp_load (0) , _processed_samples (0) , _port_change_flag (false) { _instance_name = s_instance_name; pthread_mutex_init (&_port_callback_mutex, 0); pthread_mutex_init (&_process_callback_mutex, 0); pthread_mutex_init (&_freewheel_mutex, 0); pthread_cond_init (&_freewheel_signal, 0); #if 0 // TODO //_pcmio = new ASIOPCM (); //_midiio = new WindowsMidiIo (); _pcmio->set_hw_changed_callback (hw_changed_callback_ptr, this); _pcmio->discover(); #endif } ASIOBackend::~ASIOBackend () { #if 0 delete _pcmio; _pcmio = 0; // TODO delete _midiio; _midiio = 0; // TODO #endif pthread_mutex_destroy (&_port_callback_mutex); pthread_mutex_destroy (&_process_callback_mutex); pthread_mutex_destroy (&_freewheel_mutex); pthread_cond_destroy (&_freewheel_signal); } /* AUDIOBACKEND API */ std::string ASIOBackend::name () const { return X_("ASIO"); } bool ASIOBackend::is_realtime () const { return true; } std::vector ASIOBackend::enumerate_devices () const { _audio_device_status.clear(); #if 0 // TODO std::map devices; _pcmio->device_list(devices); for (std::map::const_iterator i = devices.begin (); i != devices.end(); ++i) { if (_audio_device == "") _audio_device = i->second; _audio_device_status.push_back (DeviceStatus (i->second, true)); } #endif return _audio_device_status; } std::vector ASIOBackend::available_sample_rates (const std::string&) const { std::vector sr; #if 0 // TODO _pcmio->available_sample_rates(_audio_device, sr); #endif return sr; } std::vector ASIOBackend::available_buffer_sizes (const std::string&) const { std::vector bs; #if 0 // TODO _pcmio->available_buffer_sizes(_audio_device, bs); #endif return bs; } uint32_t ASIOBackend::available_input_channel_count (const std::string&) const { return 128; // TODO query current device } uint32_t ASIOBackend::available_output_channel_count (const std::string&) const { return 128; // TODO query current device } bool ASIOBackend::can_change_sample_rate_when_running () const { return false; } bool ASIOBackend::can_change_buffer_size_when_running () const { return true; } int ASIOBackend::set_device_name (const std::string& d) { _audio_device = d; #if 0 // TODO const float sr = _pcmio->current_sample_rate(_audio_device); #endif //if (sr > 0) { set_sample_rate(sr); } return 0; } int ASIOBackend::set_sample_rate (float sr) { if (sr <= 0) { return -1; } // TODO check if it's in the list of valid SR _samplerate = sr; engine.sample_rate_change (sr); return 0; } int ASIOBackend::set_buffer_size (uint32_t bs) { if (bs <= 0 || bs >= _max_buffer_size) { return -1; } _samples_per_period = bs; #if 0 // TODO _pcmio->set_samples_per_period(bs); #endif engine.buffer_size_change (bs); return 0; } int ASIOBackend::set_interleaved (bool yn) { if (!yn) { return 0; } return -1; } int ASIOBackend::set_input_channels (uint32_t cc) { _n_inputs = cc; return 0; } int ASIOBackend::set_output_channels (uint32_t cc) { _n_outputs = cc; return 0; } int ASIOBackend::set_systemic_input_latency (uint32_t sl) { _systemic_audio_input_latency = sl; return 0; } int ASIOBackend::set_systemic_output_latency (uint32_t sl) { _systemic_audio_output_latency = sl; return 0; } /* Retrieving parameters */ std::string ASIOBackend::device_name () const { return _audio_device; } float ASIOBackend::sample_rate () const { return _samplerate; } uint32_t ASIOBackend::buffer_size () const { return _samples_per_period; } bool ASIOBackend::interleaved () const { return false; } uint32_t ASIOBackend::input_channels () const { return _n_inputs; } uint32_t ASIOBackend::output_channels () const { return _n_outputs; } uint32_t ASIOBackend::systemic_input_latency () const { return _systemic_audio_input_latency; } uint32_t ASIOBackend::systemic_output_latency () const { return _systemic_audio_output_latency; } /* MIDI */ std::vector ASIOBackend::enumerate_midi_options () const { if (_midi_options.empty()) { _midi_options.push_back (_("WindowsMidi")); _midi_options.push_back (_("None")); } return _midi_options; } int ASIOBackend::set_midi_option (const std::string& opt) { if (opt != _("None") && opt != _("WindowsMidi")) { return -1; } _midi_driver_option = opt; return 0; } std::string ASIOBackend::midi_option () const { return _midi_driver_option; } void ASIOBackend::launch_control_app () { // TODO } /* State Control */ static void * pthread_freewheel (void *arg) { ASIOBackend *d = static_cast(arg); d->freewheel_thread (); pthread_exit (0); return 0; } static int process_callback_ptr (void *arg, const uint32_t n_samples, const uint64_t host_time) { ASIOBackend *d = static_cast (arg); return d->process_callback(n_samples, host_time); } int ASIOBackend::_start (bool for_latency_measurement) { if ((!_active_cb || !_active_fw) && _run) { // recover from 'halted', reap threads stop(); } if (_active_cb || _active_fw || _run) { PBD::error << _("ASIOBackend: already active.") << endmsg; return -1; } if (_ports.size()) { PBD::warning << _("ASIOBackend: recovering from unclean shutdown, port registry is not empty.") << endmsg; _system_inputs.clear(); _system_outputs.clear(); _system_midi_in.clear(); _system_midi_out.clear(); _ports.clear(); } assert(_active_cb == false); assert(_active_fw == false); _freewheel_ack = false; _reinit_thread_callback = true; _last_process_start = 0; #if 0 // TODO _pcmio->set_error_callback (error_callback_ptr, this); _pcmio->set_buffer_size_callback (buffer_size_callback_ptr, this); _pcmio->set_sample_rate_callback (sample_rate_callback_ptr, this); _pcmio->pcm_start (device1, device2, _samplerate, _samples_per_period, process_callback_ptr, this); switch (_pcmio->state ()) { case 0: /* OK */ break; case -1: PBD::error << _("ASIOBackend: failed to open device.") << endmsg; break; default: PBD::error << _("ASIOBackend: initialization failed.") << endmsg; break; } if (_pcmio->state ()) { return -1; } if (_n_outputs != _pcmio->n_playback_channels ()) { if (_n_outputs == 0) { _n_outputs = _pcmio->n_playback_channels (); } else { _n_outputs = std::min (_n_outputs, _pcmio->n_playback_channels ()); } PBD::info << _("ASIOBackend: adjusted output channel count to match device.") << endmsg; } if (_n_inputs != _pcmio->n_capture_channels ()) { if (_n_inputs == 0) { _n_inputs = _pcmio->n_capture_channels (); } else { _n_inputs = std::min (_n_inputs, _pcmio->n_capture_channels ()); } PBD::info << _("ASIOBackend: adjusted input channel count to match device.") << endmsg; } if (_pcmio->samples_per_period() != _samples_per_period) { _samples_per_period = _pcmio->samples_per_period(); PBD::warning << _("ASIOBackend: samples per period does not match.") << endmsg; } if (_pcmio->sample_rate() != _samplerate) { _samplerate = _pcmio->sample_rate(); engine.sample_rate_change (_samplerate); PBD::warning << _("ASIOBackend: sample rate does not match.") << endmsg; } #endif _measure_latency = for_latency_measurement; _preinit = true; _run = true; _port_change_flag = false; #if 0 // TODO if (_midi_driver_option == _("WindowsMidi")) { // TODO //_midiio->set_enabled(true); //_midiio->set_port_changed_callback(midi_port_change, this); //_midiio->start(); // triggers port discovery, callback coremidi_rediscover() } #endif if (register_system_audio_ports()) { PBD::error << _("ASIOBackend: failed to register system ports.") << endmsg; _run = false; return -1; } engine.sample_rate_change (_samplerate); engine.buffer_size_change (_samples_per_period); if (engine.reestablish_ports ()) { PBD::error << _("ASIOBackend: Could not re-establish ports.") << endmsg; _run = false; return -1; } if (pthread_create (&_freeewheel_thread, NULL, pthread_freewheel, this)) { PBD::error << _("ASIOBackend: failed to create process thread.") << endmsg; #if 0 // TODO delete _pcmio; _pcmio = 0; #endif _run = false; return -1; } int timeout = 5000; while ((!_active_cb || !_active_fw) && --timeout > 0) { Glib::usleep (1000); } if (timeout == 0) { PBD::error << _("ASIOBackend: failed to start.") << endmsg; } if (!_active_fw) { PBD::error << _("ASIOBackend: failed to start freewheeling thread.") << endmsg; _run = false; #if 0 // TODO _pcmio->pcm_stop(); #endif unregister_ports(); _active_cb = false; _active_fw = false; return -1; } if (!_active_cb) { PBD::error << _("ASIOBackend: failed to start ASIO.") << endmsg; stop(); _run = false; return -1; } engine.reconnect_ports (); // force an initial registration_callback() & latency re-compute _port_change_flag = true; pre_process (); // all systems go. #if 0 // TODO _pcmio->set_xrun_callback (xrun_callback_ptr, this); #endif _preinit = false; return 0; } int ASIOBackend::stop () { void *status; if (!_run) { return 0; } _run = false; #if 0 // TODO _pcmio->pcm_stop(); _midiio->set_port_changed_callback(NULL, NULL); _midiio->stop(); #endif pthread_mutex_lock (&_freewheel_mutex); pthread_cond_signal (&_freewheel_signal); pthread_mutex_unlock (&_freewheel_mutex); if (pthread_join (_freeewheel_thread, &status)) { PBD::error << _("ASIOBackend: failed to terminate.") << endmsg; return -1; } unregister_ports(); _active_cb = false; _active_fw = false; // ?? return 0; } int ASIOBackend::freewheel (bool onoff) { if (onoff == _freewheeling) { return 0; } _freewheeling = onoff; // wake up freewheeling thread if (0 == pthread_mutex_trylock (&_freewheel_mutex)) { pthread_cond_signal (&_freewheel_signal); pthread_mutex_unlock (&_freewheel_mutex); } return 0; } float ASIOBackend::dsp_load () const { return 100.f * _dsp_load; } size_t ASIOBackend::raw_buffer_size (DataType t) { switch (t) { case DataType::AUDIO: return _samples_per_period * sizeof(Sample); case DataType::MIDI: return _max_buffer_size; // XXX not really limited } return 0; } /* Process time */ framepos_t ASIOBackend::sample_time () { return _processed_samples; } framepos_t ASIOBackend::sample_time_at_cycle_start () { return _processed_samples; } pframes_t ASIOBackend::samples_since_cycle_start () { if (!_active_cb || !_run || _freewheeling || _freewheel) { return 0; } if (_last_process_start == 0) { return 0; } #if 0 // TODO const uint64_t now = AudioGetCurrentHostTime (); const int64_t elapsed_time_ns = AudioConvertHostTimeToNanos(now - _last_process_start); return std::max((pframes_t)0, (pframes_t)rint(1e-9 * elapsed_time_ns * _samplerate)); #else return 0; #endif } void * ASIOBackend::asio_process_thread (void *arg) { ThreadData* td = reinterpret_cast (arg); boost::function f = td->f; delete td; f (); return 0; } int ASIOBackend::create_process_thread (boost::function func) { pthread_t thread_id; pthread_attr_t attr; size_t stacksize = 100000; ThreadData* td = new ThreadData (this, func, stacksize); if (_realtime_pthread_create (SCHED_FIFO, -21, stacksize, &thread_id, asio_process_thread, td)) { pthread_attr_init (&attr); pthread_attr_setstacksize (&attr, stacksize); if (pthread_create (&thread_id, &attr, asio_process_thread, td)) { PBD::error << _("AudioEngine: cannot create process thread.") << endmsg; pthread_attr_destroy (&attr); return -1; } pthread_attr_destroy (&attr); } _threads.push_back (thread_id); return 0; } int ASIOBackend::join_process_threads () { int rv = 0; for (std::vector::const_iterator i = _threads.begin (); i != _threads.end (); ++i) { void *status; if (pthread_join (*i, &status)) { PBD::error << _("AudioEngine: cannot terminate process thread.") << endmsg; rv -= 1; } } _threads.clear (); return rv; } bool ASIOBackend::in_process_thread () { if (pthread_equal (_main_thread, pthread_self()) != 0) { return true; } for (std::vector::const_iterator i = _threads.begin (); i != _threads.end (); ++i) { if (pthread_equal (*i, pthread_self ()) != 0) { return true; } } return false; } uint32_t ASIOBackend::process_thread_count () { return _threads.size (); } void ASIOBackend::update_latencies () { // trigger latency callback in RT thread (locked graph) port_connect_add_remove_callback(); } /* PORTENGINE API */ void* ASIOBackend::private_handle () const { return NULL; } const std::string& ASIOBackend::my_name () const { return _instance_name; } bool ASIOBackend::available () const { return _run && _active_fw && _active_cb; } uint32_t ASIOBackend::port_name_size () const { return 256; } int ASIOBackend::set_port_name (PortEngine::PortHandle port, const std::string& name) { if (!valid_port (port)) { PBD::error << _("ASIOBackend::set_port_name: Invalid Port(s)") << endmsg; return -1; } return static_cast(port)->set_name (_instance_name + ":" + name); } std::string ASIOBackend::get_port_name (PortEngine::PortHandle port) const { if (!valid_port (port)) { PBD::error << _("ASIOBackend::get_port_name: Invalid Port(s)") << endmsg; return std::string (); } return static_cast(port)->name (); } int ASIOBackend::get_port_property (PortHandle port, const std::string& key, std::string& value, std::string& type) const { if (!valid_port (port)) { PBD::error << _("ASIOBackend::get_port_name: Invalid Port(s)") << endmsg; return -1; } if (key == "http://jackaudio.org/metadata/pretty-name") { type = ""; value = static_cast(port)->pretty_name (); if (!value.empty()) { return 0; } } return -1; } PortEngine::PortHandle ASIOBackend::get_port_by_name (const std::string& name) const { PortHandle port = (PortHandle) find_port (name); return port; } int ASIOBackend::get_ports ( const std::string& port_name_pattern, DataType type, PortFlags flags, std::vector& port_names) const { int rv = 0; regex_t port_regex; bool use_regexp = false; if (port_name_pattern.size () > 0) { if (!regcomp (&port_regex, port_name_pattern.c_str (), REG_EXTENDED|REG_NOSUB)) { use_regexp = true; } } for (size_t i = 0; i < _ports.size (); ++i) { ASIOBackendPort* port = _ports[i]; if ((port->type () == type) && (port->flags () & flags)) { if (!use_regexp || !regexec (&port_regex, port->name ().c_str (), 0, NULL, 0)) { port_names.push_back (port->name ()); ++rv; } } } if (use_regexp) { regfree (&port_regex); } return rv; } DataType ASIOBackend::port_data_type (PortEngine::PortHandle port) const { if (!valid_port (port)) { return DataType::NIL; } return static_cast(port)->type (); } PortEngine::PortHandle ASIOBackend::register_port ( const std::string& name, ARDOUR::DataType type, ARDOUR::PortFlags flags) { if (name.size () == 0) { return 0; } if (flags & IsPhysical) { return 0; } return add_port (_instance_name + ":" + name, type, flags); } PortEngine::PortHandle ASIOBackend::add_port ( const std::string& name, ARDOUR::DataType type, ARDOUR::PortFlags flags) { assert(name.size ()); if (find_port (name)) { PBD::error << _("ASIOBackend::register_port: Port already exists:") << " (" << name << ")" << endmsg; return 0; } ASIOBackendPort* port = NULL; switch (type) { case DataType::AUDIO: port = new ASIOPort (*this, name, flags); break; case DataType::MIDI: port = new WindowsMidiPort (*this, name, flags); break; default: PBD::error << _("ASIOBackend::register_port: Invalid Data Type.") << endmsg; return 0; } _ports.push_back (port); return port; } void ASIOBackend::unregister_port (PortEngine::PortHandle port_handle) { if (!_run) { return; } ASIOBackendPort* port = static_cast(port_handle); std::vector::iterator i = std::find (_ports.begin (), _ports.end (), static_cast(port_handle)); if (i == _ports.end ()) { PBD::error << _("ASIOBackend::unregister_port: Failed to find port") << endmsg; return; } disconnect_all(port_handle); _ports.erase (i); delete port; } int ASIOBackend::register_system_audio_ports() { LatencyRange lr; const uint32_t a_ins = _n_inputs; const uint32_t a_out = _n_outputs; const uint32_t asio_reported_input_latency = 0; // TODO _pcmio->get_latency(_audio_device, true); const uint32_t asio_reported_output_latency = 0; // TODO _pcmio->get_latency(_audio_device, false); /* audio ports */ lr.min = lr.max = asio_reported_input_latency + (_measure_latency ? 0 : _systemic_audio_input_latency); for (uint32_t i = 0; i < a_ins; ++i) { char tmp[64]; snprintf(tmp, sizeof(tmp), "system:capture_%d", i+1); PortHandle p = add_port(std::string(tmp), DataType::AUDIO, static_cast(IsOutput | IsPhysical | IsTerminal)); if (!p) return -1; set_latency_range (p, false, lr); ASIOBackendPort *cp = static_cast(p); //cp->set_pretty_name (_pcmio->cached_port_name(i, true)); // TODO _system_inputs.push_back(cp); } lr.min = lr.max = asio_reported_output_latency + (_measure_latency ? 0 : _systemic_audio_output_latency); for (uint32_t i = 0; i < a_out; ++i) { char tmp[64]; snprintf(tmp, sizeof(tmp), "system:playback_%d", i+1); PortHandle p = add_port(std::string(tmp), DataType::AUDIO, static_cast(IsInput | IsPhysical | IsTerminal)); if (!p) return -1; set_latency_range (p, true, lr); ASIOBackendPort *cp = static_cast(p); //cp->set_pretty_name (_pcmio->cached_port_name(i, false)); // TODO _system_outputs.push_back(cp); } return 0; } void ASIOBackend::unregister_ports (bool system_only) { size_t i = 0; _system_inputs.clear(); _system_outputs.clear(); _system_midi_in.clear(); _system_midi_out.clear(); while (i < _ports.size ()) { ASIOBackendPort* port = _ports[i]; if (! system_only || (port->is_physical () && port->is_terminal ())) { port->disconnect_all (); delete port; _ports.erase (_ports.begin() + i); } else { ++i; } } } int ASIOBackend::connect (const std::string& src, const std::string& dst) { ASIOBackendPort* src_port = find_port (src); ASIOBackendPort* dst_port = find_port (dst); if (!src_port) { PBD::error << _("ASIOBackend::connect: Invalid Source port:") << " (" << src <<")" << endmsg; return -1; } if (!dst_port) { PBD::error << _("ASIOBackend::connect: Invalid Destination port:") << " (" << dst <<")" << endmsg; return -1; } return src_port->connect (dst_port); } int ASIOBackend::disconnect (const std::string& src, const std::string& dst) { ASIOBackendPort* src_port = find_port (src); ASIOBackendPort* dst_port = find_port (dst); if (!src_port || !dst_port) { PBD::error << _("ASIOBackend::disconnect: Invalid Port(s)") << endmsg; return -1; } return src_port->disconnect (dst_port); } int ASIOBackend::connect (PortEngine::PortHandle src, const std::string& dst) { ASIOBackendPort* dst_port = find_port (dst); if (!valid_port (src)) { PBD::error << _("ASIOBackend::connect: Invalid Source Port Handle") << endmsg; return -1; } if (!dst_port) { PBD::error << _("ASIOBackend::connect: Invalid Destination Port") << " (" << dst << ")" << endmsg; return -1; } return static_cast(src)->connect (dst_port); } int ASIOBackend::disconnect (PortEngine::PortHandle src, const std::string& dst) { ASIOBackendPort* dst_port = find_port (dst); if (!valid_port (src) || !dst_port) { PBD::error << _("ASIOBackend::disconnect: Invalid Port(s)") << endmsg; return -1; } return static_cast(src)->disconnect (dst_port); } int ASIOBackend::disconnect_all (PortEngine::PortHandle port) { if (!valid_port (port)) { PBD::error << _("ASIOBackend::disconnect_all: Invalid Port") << endmsg; return -1; } static_cast(port)->disconnect_all (); return 0; } bool ASIOBackend::connected (PortEngine::PortHandle port, bool /* process_callback_safe*/) { if (!valid_port (port)) { PBD::error << _("ASIOBackend::disconnect_all: Invalid Port") << endmsg; return false; } return static_cast(port)->is_connected (); } bool ASIOBackend::connected_to (PortEngine::PortHandle src, const std::string& dst, bool /*process_callback_safe*/) { ASIOBackendPort* dst_port = find_port (dst); if (!valid_port (src) || !dst_port) { PBD::error << _("ASIOBackend::connected_to: Invalid Port") << endmsg; return false; } return static_cast(src)->is_connected (dst_port); } bool ASIOBackend::physically_connected (PortEngine::PortHandle port, bool /*process_callback_safe*/) { if (!valid_port (port)) { PBD::error << _("ASIOBackend::physically_connected: Invalid Port") << endmsg; return false; } return static_cast(port)->is_physically_connected (); } int ASIOBackend::get_connections (PortEngine::PortHandle port, std::vector& names, bool /*process_callback_safe*/) { if (!valid_port (port)) { PBD::error << _("ASIOBackend::get_connections: Invalid Port") << endmsg; return -1; } assert (0 == names.size ()); const std::vector& connected_ports = static_cast(port)->get_connections (); for (std::vector::const_iterator i = connected_ports.begin (); i != connected_ports.end (); ++i) { names.push_back ((*i)->name ()); } return (int)names.size (); } /* MIDI */ int ASIOBackend::midi_event_get ( pframes_t& timestamp, size_t& size, uint8_t** buf, void* port_buffer, uint32_t event_index) { if (!buf || !port_buffer) return -1; WindowsMidiBuffer& source = * static_cast(port_buffer); if (event_index >= source.size ()) { return -1; } WindowsMidiEvent * const event = source[event_index].get (); timestamp = event->timestamp (); size = event->size (); *buf = event->data (); return 0; } int ASIOBackend::midi_event_put ( void* port_buffer, pframes_t timestamp, const uint8_t* buffer, size_t size) { if (!buffer || !port_buffer) return -1; WindowsMidiBuffer& dst = * static_cast(port_buffer); if (dst.size () && (pframes_t)dst.back ()->timestamp () > timestamp) { #ifndef NDEBUG // nevermind, ::get_buffer() sorts events fprintf (stderr, "WindowsMidiBuffer: unordered event: %d > %d\n", (pframes_t)dst.back ()->timestamp (), timestamp); #endif } dst.push_back (boost::shared_ptr(new WindowsMidiEvent (timestamp, buffer, size))); return 0; } uint32_t ASIOBackend::get_midi_event_count (void* port_buffer) { if (!port_buffer) return 0; return static_cast(port_buffer)->size (); } void ASIOBackend::midi_clear (void* port_buffer) { if (!port_buffer) return; WindowsMidiBuffer * buf = static_cast(port_buffer); assert (buf); buf->clear (); } /* Monitoring */ bool ASIOBackend::can_monitor_input () const { return false; } int ASIOBackend::request_input_monitoring (PortEngine::PortHandle, bool) { return -1; } int ASIOBackend::ensure_input_monitoring (PortEngine::PortHandle, bool) { return -1; } bool ASIOBackend::monitoring_input (PortEngine::PortHandle) { return false; } /* Latency management */ void ASIOBackend::set_latency_range (PortEngine::PortHandle port, bool for_playback, LatencyRange latency_range) { if (!valid_port (port)) { PBD::error << _("ASIOBackendPort::set_latency_range (): invalid port.") << endmsg; } static_cast(port)->set_latency_range (latency_range, for_playback); } LatencyRange ASIOBackend::get_latency_range (PortEngine::PortHandle port, bool for_playback) { LatencyRange r; if (!valid_port (port)) { PBD::error << _("ASIOBackendPort::get_latency_range (): invalid port.") << endmsg; r.min = 0; r.max = 0; return r; } ASIOBackendPort* p = static_cast(port); assert(p); r = p->latency_range (for_playback); if (p->is_physical() && p->is_terminal() && p->type() == DataType::AUDIO) { if (p->is_input() && for_playback) { r.min += _samples_per_period; r.max += _samples_per_period; } if (p->is_output() && !for_playback) { r.min += _samples_per_period; r.max += _samples_per_period; } } return r; } /* Discovering physical ports */ bool ASIOBackend::port_is_physical (PortEngine::PortHandle port) const { if (!valid_port (port)) { PBD::error << _("ASIOBackendPort::port_is_physical (): invalid port.") << endmsg; return false; } return static_cast(port)->is_physical (); } void ASIOBackend::get_physical_outputs (DataType type, std::vector& port_names) { for (size_t i = 0; i < _ports.size (); ++i) { ASIOBackendPort* port = _ports[i]; if ((port->type () == type) && port->is_input () && port->is_physical ()) { port_names.push_back (port->name ()); } } } void ASIOBackend::get_physical_inputs (DataType type, std::vector& port_names) { for (size_t i = 0; i < _ports.size (); ++i) { ASIOBackendPort* port = _ports[i]; if ((port->type () == type) && port->is_output () && port->is_physical ()) { port_names.push_back (port->name ()); } } } ChanCount ASIOBackend::n_physical_outputs () const { int n_midi = 0; int n_audio = 0; for (size_t i = 0; i < _ports.size (); ++i) { ASIOBackendPort* port = _ports[i]; if (port->is_output () && port->is_physical ()) { switch (port->type ()) { case DataType::AUDIO: ++n_audio; break; case DataType::MIDI: ++n_midi; break; default: break; } } } ChanCount cc; cc.set (DataType::AUDIO, n_audio); cc.set (DataType::MIDI, n_midi); return cc; } ChanCount ASIOBackend::n_physical_inputs () const { int n_midi = 0; int n_audio = 0; for (size_t i = 0; i < _ports.size (); ++i) { ASIOBackendPort* port = _ports[i]; if (port->is_input () && port->is_physical ()) { switch (port->type ()) { case DataType::AUDIO: ++n_audio; break; case DataType::MIDI: ++n_midi; break; default: break; } } } ChanCount cc; cc.set (DataType::AUDIO, n_audio); cc.set (DataType::MIDI, n_midi); return cc; } /* Getting access to the data buffer for a port */ void* ASIOBackend::get_buffer (PortEngine::PortHandle port, pframes_t nframes) { if (!port || !valid_port (port)) return NULL; return static_cast(port)->get_buffer (nframes); } void ASIOBackend::pre_process () { bool connections_changed = false; bool ports_changed = false; if (!pthread_mutex_trylock (&_port_callback_mutex)) { if (_port_change_flag) { ports_changed = true; _port_change_flag = false; } if (!_port_connection_queue.empty ()) { connections_changed = true; } while (!_port_connection_queue.empty ()) { PortConnectData *c = _port_connection_queue.back (); manager.connect_callback (c->a, c->b, c->c); _port_connection_queue.pop_back (); delete c; } pthread_mutex_unlock (&_port_callback_mutex); } if (ports_changed) { manager.registration_callback(); } if (connections_changed) { manager.graph_order_callback(); } if (connections_changed || ports_changed) { engine.latency_callback(false); engine.latency_callback(true); } } void * ASIOBackend::freewheel_thread () { _active_fw = true; bool first_run = false; /* Freewheeling - use for export. The first call to * engine.process_callback() after engine.freewheel_callback will * if the first export cycle. * For reliable precise export timing, the calls need to be in sync. * * Furthermore we need to make sure the registered process thread * is correct. * * _freewheeling = GUI thread state as set by ::freewheel() * _freewheel = in sync here (export thread) */ pthread_mutex_lock (&_freewheel_mutex); while (_run) { // check if we should run, if (_freewheeling != _freewheel) { if (!_freewheeling) { // prepare leaving freewheeling mode _freewheel = false; // first mark as disabled _reinit_thread_callback = true; // hand over _main_thread _freewheel_ack = false; // prepare next handshake #if 0 // TODO disable hadrware MIDI threads during freewheeling _midiio->set_enabled(true); #endif } else { first_run = true; _freewheel = true; } } if (!_freewheel || !_freewheel_ack) { // wait for a change, we use a timed wait to // terminate early in case some error sets _run = 0 struct timeval tv; struct timespec ts; gettimeofday (&tv, NULL); ts.tv_sec = tv.tv_sec + 3; ts.tv_nsec = 0; pthread_cond_timedwait (&_freewheel_signal, &_freewheel_mutex, &ts); continue; } if (first_run) { // tell the engine we're ready to GO. engine.freewheel_callback (_freewheeling); first_run = false; _main_thread = pthread_self(); AudioEngine::thread_init_callback (this); #if 0 // TODO _midiio->set_enabled(false); #endif } // process port updates first in every cycle. pre_process(); // prevent device changes pthread_mutex_lock (&_process_callback_mutex); /* Freewheelin' */ // clear input buffers for (std::vector::const_iterator it = _system_inputs.begin (); it != _system_inputs.end (); ++it) { memset ((*it)->get_buffer (_samples_per_period), 0, _samples_per_period * sizeof (Sample)); } for (std::vector::const_iterator it = _system_midi_in.begin (); it != _system_midi_in.end (); ++it) { static_cast((*it)->get_buffer(0))->clear (); } _last_process_start = 0; if (engine.process_callback (_samples_per_period)) { pthread_mutex_unlock (&_process_callback_mutex); break; } pthread_mutex_unlock (&_process_callback_mutex); _dsp_load = 1.0; Glib::usleep (100); // don't hog cpu } pthread_mutex_unlock (&_freewheel_mutex); _active_fw = false; if (_run) { // engine.process_callback() returner error engine.halted_callback("ASIO Freehweeling aborted."); } return 0; } int ASIOBackend::process_callback (const uint32_t n_samples, const uint64_t host_time) { uint32_t i = 0; uint64_t clock1, clock2; _active_cb = true; if (_run && _freewheel && !_freewheel_ack) { // acknowledge freewheeling; hand-over thread ID pthread_mutex_lock (&_freewheel_mutex); if (_freewheel) _freewheel_ack = true; pthread_cond_signal (&_freewheel_signal); pthread_mutex_unlock (&_freewheel_mutex); } if (!_run || _freewheel || _preinit) { // NB if we return 1, the output is // zeroed by the asio callback return 1; } if (_reinit_thread_callback || _main_thread != pthread_self()) { _reinit_thread_callback = false; _main_thread = pthread_self(); AudioEngine::thread_init_callback (this); } if (pthread_mutex_trylock (&_process_callback_mutex)) { // block while devices are added/removed #ifndef NDEBUG printf("Xrun due to device change\n"); #endif engine.Xrun(); return 1; } /* port-connection change */ pre_process(); // cycle-length in usec const double nominal_time = 1e6 * n_samples / _samplerate; clock1 = g_get_monotonic_time(); /* get midi */ i=0; for (std::vector::const_iterator it = _system_midi_in.begin (); it != _system_midi_in.end (); ++it, ++i) { WindowsMidiBuffer* mbuf = static_cast((*it)->get_buffer(0)); mbuf->clear(); #if 0 // TODO uint64_t time_ns; uint8_t data[128]; size_t size = sizeof(data); while (_midiio->recv_event (i, nominal_time, time_ns, data, size)) { pframes_t time = floor((float) time_ns * _samplerate * 1e-9); assert (time < n_samples); midi_event_put((void*)mbuf, time, data, size); size = sizeof(data); } #endif } /* get audio */ i = 0; for (std::vector::const_iterator it = _system_inputs.begin (); it != _system_inputs.end (); ++it, ++i) { #if 0 // TODO _pcmio->get_capture_channel (i, (float*)((*it)->get_buffer(n_samples)), n_samples); #else memset ((*it)->get_buffer (n_samples), 0, n_samples * sizeof (Sample)); #endif } /* clear output buffers */ for (std::vector::const_iterator it = _system_outputs.begin (); it != _system_outputs.end (); ++it) { memset ((*it)->get_buffer (n_samples), 0, n_samples * sizeof (Sample)); } #if 0 // TODO; sync Audio + midi _midiio->start_cycle(); #endif _last_process_start = host_time; if (engine.process_callback (n_samples)) { fprintf(stderr, "ENGINE PROCESS ERROR\n"); _active_cb = false; pthread_mutex_unlock (&_process_callback_mutex); return -1; } /* mixdown midi */ for (std::vector::const_iterator it = _system_midi_out.begin (); it != _system_midi_out.end (); ++it) { static_cast(*it)->get_buffer(0); } /* queue outgoing midi */ #if 0 // TODO i = 0; for (std::vector::const_iterator it = _system_midi_out.begin (); it != _system_midi_out.end (); ++it, ++i) { #if 0 // something's still b0rked with WindowsMidiIo::send_events() const WindowsMidiBuffer *src = static_cast(*it)->const_buffer(); _midiio->send_events (i, nominal_time, (void*)src); #else // works.. const WindowsMidiBuffer *src = static_cast(*it)->const_buffer(); for (WindowsMidiBuffer::const_iterator mit = src->begin (); mit != src->end (); ++mit) { _midiio->send_event (i, (*mit)->timestamp() / nominal_time, (*mit)->data(), (*mit)->size()); } #endif } #endif /* write back audio */ #if 0 // TODO i = 0; for (std::vector::const_iterator it = _system_outputs.begin (); it != _system_outputs.end (); ++it, ++i) { _pcmio->set_playback_channel (i, (float const*)(*it)->get_buffer (n_samples), n_samples); } #endif _processed_samples += n_samples; /* calc DSP load. */ clock2 = g_get_monotonic_time(); const int64_t elapsed_time = clock2 - clock1; _dsp_load = elapsed_time / nominal_time; pthread_mutex_unlock (&_process_callback_mutex); return 0; } void ASIOBackend::error_callback () { #if 0 // TODO _pcmio->set_error_callback (NULL, NULL); _pcmio->set_sample_rate_callback (NULL, NULL); _pcmio->set_xrun_callback (NULL, NULL); _midiio->set_port_changed_callback(NULL, NULL); #endif engine.halted_callback("ASIO Process aborted."); _active_cb = false; } void ASIOBackend::xrun_callback () { engine.Xrun (); } void ASIOBackend::buffer_size_callback () { #if 0 // TODO uint32_t bs = _pcmio->samples_per_period(); if (bs == _samples_per_period) { return; } _samples_per_period = bs; engine.buffer_size_change (_samples_per_period); #endif } void ASIOBackend::sample_rate_callback () { #if 0 // TODO _pcmio->set_error_callback (NULL, NULL); _pcmio->set_sample_rate_callback (NULL, NULL); _pcmio->set_xrun_callback (NULL, NULL); _midiio->set_port_changed_callback(NULL, NULL); engine.halted_callback("Sample Rate Changed."); stop(); #endif } void ASIOBackend::hw_changed_callback () { #if 0 // TODO _reinit_thread_callback = true; engine.request_device_list_update(); #endif } /******************************************************************************/ static boost::shared_ptr _instance; static boost::shared_ptr backend_factory (AudioEngine& e); static int instantiate (const std::string& arg1, const std::string& /* arg2 */); static int deinstantiate (); static bool already_configured (); static bool available (); static ARDOUR::AudioBackendInfo _descriptor = { "ASIO", instantiate, deinstantiate, backend_factory, already_configured, available }; static boost::shared_ptr backend_factory (AudioEngine& e) { if (!_instance) { _instance.reset (new ASIOBackend (e, _descriptor)); } return _instance; } static int instantiate (const std::string& arg1, const std::string& /* arg2 */) { s_instance_name = arg1; return 0; } static int deinstantiate () { _instance.reset (); return 0; } static bool already_configured () { return false; } static bool available () { return true; } extern "C" ARDOURBACKEND_API ARDOUR::AudioBackendInfo* descriptor () { return &_descriptor; } /******************************************************************************/ ASIOBackendPort::ASIOBackendPort (ASIOBackend &b, const std::string& name, PortFlags flags) : _osx_backend (b) , _name (name) , _flags (flags) { _capture_latency_range.min = 0; _capture_latency_range.max = 0; _playback_latency_range.min = 0; _playback_latency_range.max = 0; } ASIOBackendPort::~ASIOBackendPort () { disconnect_all (); } int ASIOBackendPort::connect (ASIOBackendPort *port) { if (!port) { PBD::error << _("ASIOBackendPort::connect (): invalid (null) port") << endmsg; return -1; } if (type () != port->type ()) { PBD::error << _("ASIOBackendPort::connect (): wrong port-type") << endmsg; return -1; } if (is_output () && port->is_output ()) { PBD::error << _("ASIOBackendPort::connect (): cannot inter-connect output ports.") << endmsg; return -1; } if (is_input () && port->is_input ()) { PBD::error << _("ASIOBackendPort::connect (): cannot inter-connect input ports.") << endmsg; return -1; } if (this == port) { PBD::error << _("ASIOBackendPort::connect (): cannot self-connect ports.") << endmsg; return -1; } if (is_connected (port)) { #if 0 // don't bother to warn about this for now. just ignore it PBD::error << _("ASIOBackendPort::connect (): ports are already connected:") << " (" << name () << ") -> (" << port->name () << ")" << endmsg; #endif return -1; } _connect (port, true); return 0; } void ASIOBackendPort::_connect (ASIOBackendPort *port, bool callback) { _connections.push_back (port); if (callback) { port->_connect (this, false); _osx_backend.port_connect_callback (name(), port->name(), true); } } int ASIOBackendPort::disconnect (ASIOBackendPort *port) { if (!port) { PBD::error << _("ASIOBackendPort::disconnect (): invalid (null) port") << endmsg; return -1; } if (!is_connected (port)) { PBD::error << _("ASIOBackendPort::disconnect (): ports are not connected:") << " (" << name () << ") -> (" << port->name () << ")" << endmsg; return -1; } _disconnect (port, true); return 0; } void ASIOBackendPort::_disconnect (ASIOBackendPort *port, bool callback) { std::vector::iterator it = std::find (_connections.begin (), _connections.end (), port); assert (it != _connections.end ()); _connections.erase (it); if (callback) { port->_disconnect (this, false); _osx_backend.port_connect_callback (name(), port->name(), false); } } void ASIOBackendPort::disconnect_all () { while (!_connections.empty ()) { _connections.back ()->_disconnect (this, false); _osx_backend.port_connect_callback (name(), _connections.back ()->name(), false); _connections.pop_back (); } } bool ASIOBackendPort::is_connected (const ASIOBackendPort *port) const { return std::find (_connections.begin (), _connections.end (), port) != _connections.end (); } bool ASIOBackendPort::is_physically_connected () const { for (std::vector::const_iterator it = _connections.begin (); it != _connections.end (); ++it) { if ((*it)->is_physical ()) { return true; } } return false; } /******************************************************************************/ ASIOPort::ASIOPort (ASIOBackend &b, const std::string& name, PortFlags flags) : ASIOBackendPort (b, name, flags) { memset (_buffer, 0, sizeof (_buffer)); mlock(_buffer, sizeof (_buffer)); } ASIOPort::~ASIOPort () { } void* ASIOPort::get_buffer (pframes_t n_samples) { if (is_input ()) { std::vector::const_iterator it = get_connections ().begin (); if (it == get_connections ().end ()) { memset (_buffer, 0, n_samples * sizeof (Sample)); } else { ASIOPort const * source = static_cast(*it); assert (source && source->is_output ()); memcpy (_buffer, source->const_buffer (), n_samples * sizeof (Sample)); while (++it != get_connections ().end ()) { source = static_cast(*it); assert (source && source->is_output ()); Sample* dst = buffer (); const Sample* src = source->const_buffer (); for (uint32_t s = 0; s < n_samples; ++s, ++dst, ++src) { *dst += *src; } } } } return _buffer; } WindowsMidiPort::WindowsMidiPort (ASIOBackend &b, const std::string& name, PortFlags flags) : ASIOBackendPort (b, name, flags) , _n_periods (1) , _bufperiod (0) { _buffer[0].clear (); _buffer[1].clear (); } WindowsMidiPort::~WindowsMidiPort () { } struct MidiEventSorter { bool operator() (const boost::shared_ptr& a, const boost::shared_ptr& b) { return *a < *b; } }; void* WindowsMidiPort::get_buffer (pframes_t /* nframes */) { if (is_input ()) { (_buffer[_bufperiod]).clear (); for (std::vector::const_iterator i = get_connections ().begin (); i != get_connections ().end (); ++i) { const WindowsMidiBuffer * src = static_cast(*i)->const_buffer (); for (WindowsMidiBuffer::const_iterator it = src->begin (); it != src->end (); ++it) { (_buffer[_bufperiod]).push_back (boost::shared_ptr(new WindowsMidiEvent (**it))); } } std::sort ((_buffer[_bufperiod]).begin (), (_buffer[_bufperiod]).end (), MidiEventSorter()); } return &(_buffer[_bufperiod]); } WindowsMidiEvent::WindowsMidiEvent (const pframes_t timestamp, const uint8_t* data, size_t size) : _size (size) , _timestamp (timestamp) , _data (0) { if (size > 0) { _data = (uint8_t*) malloc (size); memcpy (_data, data, size); } } WindowsMidiEvent::WindowsMidiEvent (const WindowsMidiEvent& other) : _size (other.size ()) , _timestamp (other.timestamp ()) , _data (0) { if (other.size () && other.const_data ()) { _data = (uint8_t*) malloc (other.size ()); memcpy (_data, other.const_data (), other.size ()); } }; WindowsMidiEvent::~WindowsMidiEvent () { free (_data); };