/* Copyright (C) 2007 Paul sDavis Written by Sampo Savolainen This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include void x86_sse_avx_find_peaks(const float* buf, uint32_t nframes, float *min, float *max) { __m256 current_max, current_min, work; // Load max and min values into all eight slots of the YMM registers current_min = _mm256_set1_ps(*min); current_max = _mm256_set1_ps(*max); // Work input until "buf" reaches 16 byte alignment while ( ((intptr_t)buf) % 32 != 0 && nframes > 0) { // Load the next float into the work buffer work = _mm256_set1_ps(*buf); current_min = _mm256_min_ps(current_min, work); current_max = _mm256_max_ps(current_max, work); buf++; nframes--; } // use 64 byte prefetch for quadruple quads: // load each 64 bytes into cash before processing while (nframes >= 16) { #if defined(COMPILER_MSVC) || defined(COMPILER_MINGW) _mm_prefetch(((char*)buf+64), _mm_hint(0) ); #else __builtin_prefetch(buf+64,0,0); #endif work = _mm256_load_ps(buf); current_min = _mm256_min_ps(current_min, work); current_max = _mm256_max_ps(current_max, work); buf+=8; work = _mm256_load_ps(buf); current_min = _mm256_min_ps(current_min, work); current_max = _mm256_max_ps(current_max, work); buf+=8; nframes-=16; } // work through 32 bytes aligned buffers while (nframes >= 8) { work = _mm256_load_ps(buf); current_min = _mm256_min_ps(current_min, work); current_max = _mm256_max_ps(current_max, work); buf+=8; nframes-=8; } // work through the rest < 4 samples while ( nframes > 0) { // Load the next float into the work buffer work = _mm256_set1_ps(*buf); current_min = _mm256_min_ps(current_min, work); current_max = _mm256_max_ps(current_max, work); buf++; nframes--; } // Find min & max value in current_max through shuffle tricks work = current_min; work = _mm256_shuffle_ps (current_min, current_min, _MM_SHUFFLE(2, 3, 0, 1)); current_min = _mm256_min_ps (work, current_min); work = _mm256_shuffle_ps (current_min, current_min, _MM_SHUFFLE(1, 0, 3, 2)); current_min = _mm256_min_ps (work, current_min); work = _mm256_permute2f128_ps( current_min, current_min, 1); current_min = _mm256_min_ps (work, current_min); *min = current_min[0]; work = current_max; work = _mm256_shuffle_ps(current_max, current_max, _MM_SHUFFLE(2, 3, 0, 1)); current_max = _mm256_max_ps (work, current_max); work = _mm256_shuffle_ps(current_max, current_max, _MM_SHUFFLE(1, 0, 3, 2)); current_max = _mm256_max_ps (work, current_max); work = _mm256_permute2f128_ps( current_max, current_max, 1); current_max = _mm256_max_ps (work, current_max); *max = current_max[0]; // zero upper 128 bit of 256 bit ymm register to avoid penalties using non-AVX instructions _mm256_zeroupper (); }