/* Copyright (C) 2012 Paul Davis Written by Robin Gareus This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include "timecode/time.h" #include "ardour/audioengine.h" #include "ardour/audio_port.h" #include "ardour/debug.h" #include "ardour/io.h" #include "ardour/session.h" #include "ardour/slave.h" #include "pbd/i18n.h" using namespace std; using namespace ARDOUR; using namespace PBD; using namespace Timecode; /* really verbose timing debug */ //#define LTC_GEN_FRAMEDBUG //#define LTC_GEN_TXDBUG #ifndef MAX #define MAX(a,b) ( (a) > (b) ? (a) : (b) ) #endif #ifndef MIN #define MIN(a,b) ( (a) < (b) ? (a) : (b) ) #endif /* LTC signal should have a rise time of 25 us +/- 5 us. * yet with most sound-cards a square-wave of 1-2 sample * introduces ringing and small oscillations. * https://en.wikipedia.org/wiki/Gibbs_phenomenon * A low-pass filter in libltc can reduce this at * the cost of being slightly out of spec WRT to rise-time. * * This filter is adaptive so that fast vari-speed signals * will not be affected by it. */ #define LTC_RISE_TIME(speed) MIN (100, MAX(40, (4000000 / ((speed==0)?1:speed) / engine().sample_rate()))) #define TV_STANDARD(tcf) \ (timecode_to_frames_per_second(tcf)==25.0 ? LTC_TV_625_50 : \ timecode_has_drop_frames(tcf)? LTC_TV_525_60 : LTC_TV_FILM_24) void Session::ltc_tx_initialize() { ltc_enc_tcformat = config.get_timecode_format(); ltc_tx_parse_offset(); DEBUG_TRACE (DEBUG::LTC, string_compose("LTC TX init sr: %1 fps: %2\n", nominal_frame_rate(), timecode_to_frames_per_second(ltc_enc_tcformat))); ltc_encoder = ltc_encoder_create(nominal_frame_rate(), timecode_to_frames_per_second(ltc_enc_tcformat), TV_STANDARD(ltc_enc_tcformat), 0); ltc_encoder_set_bufsize(ltc_encoder, nominal_frame_rate(), 23.0); ltc_encoder_set_filter(ltc_encoder, LTC_RISE_TIME(1.0)); /* buffersize for 1 LTC frame: (1 + sample-rate / fps) bytes * usually returned by ltc_encoder_get_buffersize(encoder) * * since the fps can change and A3's min fps: 24000/1001 */ ltc_enc_buf = (ltcsnd_sample_t*) calloc((nominal_frame_rate() / 23), sizeof(ltcsnd_sample_t)); ltc_speed = 0; ltc_prev_cycle = -1; ltc_tx_reset(); ltc_tx_resync_latency(); Xrun.connect_same_thread (*this, boost::bind (&Session::ltc_tx_reset, this)); engine().GraphReordered.connect_same_thread (*this, boost::bind (&Session::ltc_tx_resync_latency, this)); restarting = false; } void Session::ltc_tx_cleanup() { DEBUG_TRACE (DEBUG::LTC, "LTC TX cleanup\n"); free(ltc_enc_buf); ltc_enc_buf = NULL; ltc_encoder_free(ltc_encoder); ltc_encoder = NULL; } void Session::ltc_tx_resync_latency() { DEBUG_TRACE (DEBUG::LTC, "LTC TX resync latency\n"); if (!deletion_in_progress()) { boost::shared_ptr ltcport = ltc_output_port(); if (ltcport) { ltcport->get_connected_latency_range(ltc_out_latency, true); } } } void Session::ltc_tx_reset() { DEBUG_TRACE (DEBUG::LTC, "LTC TX reset\n"); ltc_enc_pos = -9999; // force re-start ltc_buf_len = 0; ltc_buf_off = 0; ltc_enc_byte = 0; ltc_enc_cnt = 0; ltc_encoder_reset(ltc_encoder); } void Session::ltc_tx_parse_offset() { Timecode::Time offset_tc; Timecode::parse_timecode_format(config.get_timecode_generator_offset(), offset_tc); offset_tc.rate = timecode_frames_per_second(); offset_tc.drop = timecode_drop_frames(); timecode_to_sample(offset_tc, ltc_timecode_offset, false, false); ltc_timecode_negative_offset = !offset_tc.negative; ltc_prev_cycle = -1; } void Session::ltc_tx_recalculate_position() { SMPTETimecode enctc; Timecode::Time a3tc; ltc_encoder_get_timecode(ltc_encoder, &enctc); a3tc.hours = enctc.hours; a3tc.minutes = enctc.mins; a3tc.seconds = enctc.secs; a3tc.frames = enctc.frame; a3tc.rate = timecode_to_frames_per_second(ltc_enc_tcformat); a3tc.drop = timecode_has_drop_frames(ltc_enc_tcformat); Timecode::timecode_to_sample (a3tc, ltc_enc_pos, true, false, (double)frame_rate(), config.get_subframes_per_frame(), ltc_timecode_negative_offset, ltc_timecode_offset ); restarting = false; } void Session::ltc_tx_send_time_code_for_cycle (framepos_t start_frame, framepos_t end_frame, double target_speed, double current_speed, pframes_t nframes) { assert (nframes > 0); Sample *out; pframes_t txf = 0; boost::shared_ptr ltcport = ltc_output_port(); Buffer& buf (ltcport->get_buffer (nframes)); if (!ltc_encoder || !ltc_enc_buf) { return; } SyncSource sync_src = Config->get_sync_source(); if (engine().freewheeling() || !Config->get_send_ltc() /* TODO * decide which time-sources we can generated LTC from. * Internal, JACK or sample-synced slaves should be fine. * talk to oofus. * || (config.get_external_sync() && sync_src == LTC) || (config.get_external_sync() && sync_src == MTC) */ ||(config.get_external_sync() && sync_src == MIDIClock) ) { return; } out = dynamic_cast(&buf)->data (); /* range from libltc (38..218) || - 128.0 -> (-90..90) */ const float ltcvol = Config->get_ltc_output_volume()/(90.0); // pow(10, db/20.0)/(90.0); DEBUG_TRACE (DEBUG::LTC, string_compose("LTC TX %1 to %2 / %3 | lat: %4\n", start_frame, end_frame, nframes, ltc_out_latency.max)); /* all systems go. Now here's the plan: * * 1) check if fps has changed * 2) check direction of encoding, calc speed, re-sample existing buffer * 3) calculate frame and byte to send aligned to jack-period size * 4) check if it's the frame/byte that is already in the queue * 5) if (4) mismatch, re-calculate offset of LTC frame relative to period size * 6) actual LTC audio output * 6a) send remaining part of already queued frame; break on nframes * 6b) encode new LTC-frame byte * 6c) goto 6a * 7) done */ // (1) check fps TimecodeFormat cur_timecode = config.get_timecode_format(); if (cur_timecode != ltc_enc_tcformat) { DEBUG_TRACE (DEBUG::LTC, string_compose("LTC TX1: TC format mismatch - reinit sr: %1 fps: %2\n", nominal_frame_rate(), timecode_to_frames_per_second(cur_timecode))); if (ltc_encoder_reinit(ltc_encoder, nominal_frame_rate(), timecode_to_frames_per_second(cur_timecode), TV_STANDARD(cur_timecode), 0 )) { PBD::error << _("LTC encoder: invalid framerate - LTC encoding is disabled for the remainder of this session.") << endmsg; ltc_tx_cleanup(); return; } ltc_encoder_set_filter(ltc_encoder, LTC_RISE_TIME(ltc_speed)); ltc_enc_tcformat = cur_timecode; ltc_tx_parse_offset(); ltc_tx_reset(); } /* LTC is max. 30 fps */ if (timecode_to_frames_per_second(cur_timecode) > 30) { return; } // (2) speed & direction /* speed 0 aka transport stopped is interpreted as rolling forward. * keep repeating current frame */ #define SIGNUM(a) ( (a) < 0 ? -1 : 1) bool speed_changed = false; /* port latency compensation: * The _generated timecode_ is offset by the port-latency, * therefore the offset depends on the direction of transport. * * latency is compensated by adding it to the timecode to * be generated. e.g. if the signal will reach the output in * N samples time from now, generate the timecode for (now + N). * * sample-sync is achieved by further calculating the difference * between the timecode and the session-transport and offsetting the * buffer. * * The timecode is generated directly in the Session process callback * using _transport_frame. It requires that the session has set the * port's playback latency to worst_playback_latency() prior to * calling ltc_tx_send_time_code_for_cycle(). */ framepos_t cycle_start_frame; if (current_speed < 0) { cycle_start_frame = (start_frame - ltc_out_latency.max + worst_playback_latency()); } else if (current_speed > 0) { cycle_start_frame = (start_frame + ltc_out_latency.max - worst_playback_latency()); } else { /* There is no need to compensate for latency when not rolling * rather send the accurate NOW timecode * (LTC encoder compenates latency by sending earlier timecode) */ cycle_start_frame = start_frame; } /* LTC TV standard offset */ if (current_speed != 0) { /* ditto - send "NOW" if not rolling */ cycle_start_frame -= ltc_frame_alignment(samples_per_timecode_frame(), TV_STANDARD(cur_timecode)); } /* cycle-start may become negative due to latency compensation */ if (cycle_start_frame < 0) { cycle_start_frame = 0; } double new_ltc_speed = (double)(labs(end_frame - start_frame) * SIGNUM(current_speed)) / (double)nframes; if (nominal_frame_rate() != frame_rate()) { new_ltc_speed *= (double)nominal_frame_rate() / (double)frame_rate(); } if (SIGNUM(new_ltc_speed) != SIGNUM (ltc_speed)) { DEBUG_TRACE (DEBUG::LTC, "LTC TX2: transport changed direction\n"); ltc_tx_reset(); } if (ltc_speed != new_ltc_speed /* but only once if, current_speed changes to 0. In that case * new_ltc_speed is > 0 because (end_frame - start_frame) == jack-period for no-roll * but ltc_speed will still be 0 */ && (current_speed != 0 || ltc_speed != current_speed) ) { /* check ./libs/ardour/interpolation.cc CubicInterpolation::interpolate * if target_speed != current_speed we should interpolate, too. * * However, currency in A3 target_speed == current_speed for each process cycle * (except for the sign and if target_speed > 8.0). * Besides, above speed calculation uses the difference (end_frame - start_frame). * end_frame is calculated from 'frames_moved' which includes the interpolation. * so we're good. */ DEBUG_TRACE (DEBUG::LTC, string_compose("LTC TX2: speed change old: %1 cur: %2 tgt: %3 ctd: %4\n", ltc_speed, current_speed, target_speed, fabs(current_speed) - target_speed, new_ltc_speed)); speed_changed = true; ltc_encoder_set_filter(ltc_encoder, LTC_RISE_TIME(new_ltc_speed)); } if (end_frame == start_frame || fabs(current_speed) < 0.1 ) { DEBUG_TRACE (DEBUG::LTC, "LTC TX2: transport is not rolling or absolute-speed < 0.1\n"); /* keep repeating current frame * * an LTC generator must be able to continue generating LTC when Ardours transport is in stop * some machines do odd things if LTC goes away: * e.g. a tape based machine (video or audio), some think they have gone into park if LTC goes away, * so unspool the tape from the playhead. That might be inconvenient. * If LTC keeps arriving they remain in a stop position with the tape on the playhead. */ new_ltc_speed = 0; if (!Config->get_ltc_send_continuously()) { ltc_speed = new_ltc_speed; return; } if (start_frame != ltc_prev_cycle) { DEBUG_TRACE (DEBUG::LTC, string_compose("LTC TX2: no-roll seek from %1 to %2 (%3)\n", ltc_prev_cycle, start_frame, cycle_start_frame)); ltc_tx_reset(); } } if (fabs(new_ltc_speed) > 10.0) { DEBUG_TRACE (DEBUG::LTC, "LTC TX2: speed is out of bounds.\n"); ltc_tx_reset(); return; } if (ltc_speed == 0 && new_ltc_speed != 0) { DEBUG_TRACE (DEBUG::LTC, "LTC TX2: transport started rolling - reset\n"); ltc_tx_reset(); } /* the timecode duration corresponding to the samples that are still * in the buffer. Here, the speed of previous cycle is used to calculate * the alignment at the beginning of this cycle later. */ double poff = (ltc_buf_len - ltc_buf_off) * ltc_speed; if (speed_changed && new_ltc_speed != 0) { /* we need to re-sample the existing buffer. * "make space for the en-coder to catch up to the new speed" * * since the LTC signal is a rectangular waveform we can simply squeeze it * by removing samples or duplicating samples /here and there/. * * There may be a more elegant way to do this, in fact one could * simply re-render the buffer using ltc_encoder_encode_byte() * but that'd require some timecode offset buffer magic, * which is left for later.. */ double oldbuflen = (double)(ltc_buf_len - ltc_buf_off); double newbuflen = (double)(ltc_buf_len - ltc_buf_off) * fabs(ltc_speed / new_ltc_speed); DEBUG_TRACE (DEBUG::LTC, string_compose("LTC TX2: bufOld %1 bufNew %2 | diff %3\n", (ltc_buf_len - ltc_buf_off), newbuflen, newbuflen - oldbuflen )); double bufrspdiff = rint(newbuflen - oldbuflen); if (abs(bufrspdiff) > newbuflen || abs(bufrspdiff) > oldbuflen) { DEBUG_TRACE (DEBUG::LTC, "LTC TX2: resampling buffer would destroy information.\n"); ltc_tx_reset(); poff = 0; } else if (bufrspdiff != 0 && newbuflen > oldbuflen) { int incnt = 0; double samples_to_insert = ceil(newbuflen - oldbuflen); double avg_distance = newbuflen / samples_to_insert; DEBUG_TRACE (DEBUG::LTC, string_compose("LTC TX2: resample buffer insert: %1\n", samples_to_insert)); for (int rp = ltc_buf_off; rp < ltc_buf_len - 1; ++rp) { const int ro = rp - ltc_buf_off; if (ro < (incnt*avg_distance)) continue; const ltcsnd_sample_t v1 = ltc_enc_buf[rp]; const ltcsnd_sample_t v2 = ltc_enc_buf[rp+1]; if (v1 != v2 && ro < ((incnt+1)*avg_distance)) continue; memmove(<c_enc_buf[rp+1], <c_enc_buf[rp], ltc_buf_len-rp); incnt++; ltc_buf_len++; } } else if (bufrspdiff != 0 && newbuflen < oldbuflen) { double samples_to_remove = ceil(oldbuflen - newbuflen); DEBUG_TRACE (DEBUG::LTC, string_compose("LTC TX2: resample buffer - remove: %1\n", samples_to_remove)); if (oldbuflen <= samples_to_remove) { ltc_buf_off = ltc_buf_len= 0; } else { double avg_distance = newbuflen / samples_to_remove; int rmcnt = 0; for (int rp = ltc_buf_off; rp < ltc_buf_len - 1; ++rp) { const int ro = rp - ltc_buf_off; if (ro < (rmcnt*avg_distance)) continue; const ltcsnd_sample_t v1 = ltc_enc_buf[rp]; const ltcsnd_sample_t v2 = ltc_enc_buf[rp+1]; if (v1 != v2 && ro < ((rmcnt+1)*avg_distance)) continue; memmove(<c_enc_buf[rp], <c_enc_buf[rp+1], ltc_buf_len-rp-1); ltc_buf_len--; rmcnt++; } } } } ltc_prev_cycle = start_frame; ltc_speed = new_ltc_speed; DEBUG_TRACE (DEBUG::LTC, string_compose("LTC TX2: transport speed %1.\n", ltc_speed)); // (3) bit/sample alignment Timecode::Time tc_start; framepos_t tc_sample_start; /* calc timecode frame from current position - round down to nearest timecode */ Timecode::sample_to_timecode(cycle_start_frame, tc_start, true, false, timecode_frames_per_second(), timecode_drop_frames(), (double)frame_rate(), config.get_subframes_per_frame(), ltc_timecode_negative_offset, ltc_timecode_offset ); /* convert timecode back to sample-position */ Timecode::timecode_to_sample (tc_start, tc_sample_start, true, false, (double)frame_rate(), config.get_subframes_per_frame(), ltc_timecode_negative_offset, ltc_timecode_offset ); /* difference between current frame and TC frame in samples */ frameoffset_t soff = cycle_start_frame - tc_sample_start; if (current_speed == 0) { soff = 0; } DEBUG_TRACE (DEBUG::LTC, string_compose("LTC TX3: A3cycle: %1 = A3tc: %2 +off: %3\n", cycle_start_frame, tc_sample_start, soff)); // (4) check if alignment matches const double fptcf = samples_per_timecode_frame(); /* maximum difference of bit alignment in audio-samples. * * if transport and LTC generator differs more than this, the LTC * generator will be re-initialized * * due to rounding error and variations in LTC-bit duration depending * on the speed, it can be off by +- ltc_speed audio-samples. * When the playback speed changes, it can actually reach +- 2 * ltc_speed * in the cycle _after_ the speed changed. The average delta however is 0. */ double maxdiff; if (config.get_external_sync() && slave()) { maxdiff = slave()->resolution(); } else { maxdiff = ceil(fabs(ltc_speed))*2.0; if (nominal_frame_rate() != frame_rate()) { maxdiff *= 3.0; } if (ltc_enc_tcformat == Timecode::timecode_23976 || ltc_enc_tcformat == Timecode::timecode_24976) { maxdiff *= 15.0; } } DEBUG_TRACE (DEBUG::LTC, string_compose("LTC TX4: enc: %1 + %2 - %3 || buf-bytes: %4 enc-byte: %5\n", ltc_enc_pos, ltc_enc_cnt, poff, (ltc_buf_len - ltc_buf_off), poff, ltc_enc_byte)); DEBUG_TRACE (DEBUG::LTC, string_compose("LTC TX4: enc-pos: %1 | d: %2\n", ltc_enc_pos + ltc_enc_cnt - poff, rint(ltc_enc_pos + ltc_enc_cnt - poff) - cycle_start_frame )); const framecnt_t wrap24h = 86400. * frame_rate(); if (ltc_enc_pos < 0 || (ltc_speed != 0 && fabs(fmod(ceil(ltc_enc_pos + ltc_enc_cnt - poff), wrap24h) - (cycle_start_frame % wrap24h)) > maxdiff) ) { // (5) re-align ltc_tx_reset(); /* set frame to encode */ SMPTETimecode tc; tc.hours = tc_start.hours % 24; tc.mins = tc_start.minutes; tc.secs = tc_start.seconds; tc.frame = tc_start.frames; ltc_encoder_set_timecode(ltc_encoder, &tc); /* workaround for libltc recognizing 29.97 and 30000/1001 as drop-frame TC. * In A3 30000/1001 or 30 fps can be drop-frame. */ LTCFrame ltcframe; ltc_encoder_get_frame(ltc_encoder, <cframe); ltcframe.dfbit = timecode_has_drop_frames(cur_timecode)?1:0; ltc_encoder_set_frame(ltc_encoder, <cframe); DEBUG_TRACE (DEBUG::LTC, string_compose("LTC TX4: now: %1 trs: %2 toff %3\n", cycle_start_frame, tc_sample_start, soff)); int32_t cyc_off; if (soff < 0 || soff >= fptcf) { /* session framerate change between (2) and now */ ltc_tx_reset(); return; } if (ltc_speed < 0 ) { /* calculate the byte that starts at or after the current position */ ltc_enc_byte = floor((10.0 * soff) / (fptcf)); ltc_enc_cnt = ltc_enc_byte * fptcf / 10.0; /* calculate difference between the current position and the byte to send */ cyc_off = soff- ceil(ltc_enc_cnt); } else { /* calculate the byte that starts at or after the current position */ ltc_enc_byte = ceil((10.0 * soff) / fptcf); ltc_enc_cnt = ltc_enc_byte * fptcf / 10.0; /* calculate difference between the current position and the byte to send */ cyc_off = ceil(ltc_enc_cnt) - soff; if (ltc_enc_byte == 10) { ltc_enc_byte = 0; ltc_encoder_inc_timecode(ltc_encoder); } } DEBUG_TRACE (DEBUG::LTC, string_compose("LTC TX5 restart encoder: soff %1 byte %2 cycoff %3\n", soff, ltc_enc_byte, cyc_off)); if ( (ltc_speed < 0 && ltc_enc_byte !=9 ) || (ltc_speed >= 0 && ltc_enc_byte !=0 ) ) { restarting = true; } if (cyc_off >= 0 && cyc_off <= (int32_t) nframes) { /* offset in this cycle */ txf= rint(cyc_off / fabs(ltc_speed)); memset(out, 0, cyc_off * sizeof(Sample)); } else { /* resync next cycle */ memset(out, 0, nframes * sizeof(Sample)); return; } ltc_enc_pos = tc_sample_start % wrap24h; DEBUG_TRACE (DEBUG::LTC, string_compose("LTC TX5 restart @ %1 + %2 - %3 | byte %4\n", ltc_enc_pos, ltc_enc_cnt, cyc_off, ltc_enc_byte)); } else if (ltc_speed != 0 && (fptcf / ltc_speed / 80) > 3 ) { /* reduce (low freq) jitter. * The granularity of the LTC encoder speed is 1 byte = * (frames-per-timecode-frame / 10) audio-samples. * Thus, tiny speed changes [as produced by some slaves] * may not have any effect in the cycle when they occur, * but they will add up over time. * * This is a linear approx to compensate for this jitter * and prempt re-sync when the drift builds up. * * However, for very fast speeds - when 1 LTC bit is * <= 3 audio-sample - adjusting speed may lead to * invalid frames. * * To do better than this, resampling (or a rewrite of the * encoder) is required. */ ltc_speed -= fmod(((ltc_enc_pos + ltc_enc_cnt - poff) - cycle_start_frame), wrap24h) / engine().sample_rate(); } // (6) encode and output while (1) { #ifdef LTC_GEN_TXDBUG DEBUG_TRACE (DEBUG::LTC, string_compose("LTC TX6.1 @%1 [ %2 / %3 ]\n", txf, ltc_buf_off, ltc_buf_len)); #endif // (6a) send remaining buffer while ((ltc_buf_off < ltc_buf_len) && (txf < nframes)) { const float v1 = ltc_enc_buf[ltc_buf_off++] - 128.0; const Sample val = (Sample) (v1*ltcvol); out[txf++] = val; } #ifdef LTC_GEN_TXDBUG DEBUG_TRACE (DEBUG::LTC, string_compose("LTC TX6.2 @%1 [ %2 / %3 ]\n", txf, ltc_buf_off, ltc_buf_len)); #endif if (txf >= nframes) { DEBUG_TRACE (DEBUG::LTC, string_compose("LTC TX7 enc: %1 [ %2 / %3 ] byte: %4 spd %5 fpp %6 || nf: %7\n", ltc_enc_pos, ltc_buf_off, ltc_buf_len, ltc_enc_byte, ltc_speed, nframes, txf)); break; } ltc_buf_len = 0; ltc_buf_off = 0; // (6b) encode LTC, bump timecode if (ltc_speed < 0) { ltc_enc_byte = (ltc_enc_byte + 9)%10; if (ltc_enc_byte == 9) { ltc_encoder_dec_timecode(ltc_encoder); ltc_tx_recalculate_position(); ltc_enc_cnt = fptcf; } } int enc_frames; if (restarting) { /* write zero bytes -- don't touch encoder until we're at a frame-boundary * otherwise the biphase polarity may be inverted. */ enc_frames = fptcf / 10.0; memset(<c_enc_buf[ltc_buf_len], 127, enc_frames * sizeof(ltcsnd_sample_t)); } else { if (ltc_encoder_encode_byte(ltc_encoder, ltc_enc_byte, (ltc_speed==0)?1.0:(1.0/ltc_speed))) { DEBUG_TRACE (DEBUG::LTC, string_compose("LTC TX6.3 encoder error byte %1\n", ltc_enc_byte)); ltc_encoder_buffer_flush(ltc_encoder); ltc_tx_reset(); return; } enc_frames = ltc_encoder_get_buffer(ltc_encoder, &(ltc_enc_buf[ltc_buf_len])); } #ifdef LTC_GEN_FRAMEDBUG DEBUG_TRACE (DEBUG::LTC, string_compose("LTC TX6.3 encoded %1 bytes for LTC-byte %2 at spd %3\n", enc_frames, ltc_enc_byte, ltc_speed)); #endif if (enc_frames <=0) { DEBUG_TRACE (DEBUG::LTC, "LTC TX6.3 encoder empty buffer.\n"); ltc_encoder_buffer_flush(ltc_encoder); ltc_tx_reset(); return; } ltc_buf_len += enc_frames; if (ltc_speed < 0) ltc_enc_cnt -= fptcf/10.0; else ltc_enc_cnt += fptcf/10.0; if (ltc_speed >= 0) { ltc_enc_byte = (ltc_enc_byte + 1)%10; if (ltc_enc_byte == 0 && ltc_speed != 0) { ltc_encoder_inc_timecode(ltc_encoder); #if 0 /* force fixed parity -- scope debug */ LTCFrame f; ltc_encoder_get_frame(ltc_encoder, &f); f.biphase_mark_phase_correction=0; ltc_encoder_set_frame(ltc_encoder, &f); #endif ltc_tx_recalculate_position(); ltc_enc_cnt = 0; } else if (ltc_enc_byte == 0) { ltc_enc_cnt = 0; restarting=false; } } #ifdef LTC_GEN_FRAMEDBUG DEBUG_TRACE (DEBUG::LTC, string_compose("LTC TX6.4 enc-pos: %1 + %2 [ %4 / %5 ] spd %6\n", ltc_enc_pos, ltc_enc_cnt, ltc_buf_off, ltc_buf_len, ltc_speed)); #endif } dynamic_cast(&buf)->set_written (true); return; }