/* Copyright (C) 2008 Torben Hohn This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include "ardour/pi_controller.h" static inline double hann(double x) { return 0.5 * (1.0 - cos(2 * M_PI * x)); } PIController::PIController (double resample_factor, int fir_size) { resample_mean = resample_factor; static_resample_factor = resample_factor; offset_array = new double[fir_size]; window_array = new double[fir_size]; offset_differential_index = 0; offset_integral = 0.0; smooth_size = fir_size; for (int i = 0; i < fir_size; i++) { offset_array[i] = 0.0; window_array[i] = hann(double(i) / (double(fir_size) - 1.0)); } // These values could be configurable catch_factor = 20000; catch_factor2 = 4000; pclamp = 150.0; controlquant = 10000.0; fir_empty = false; } PIController::~PIController () { delete [] offset_array; delete [] window_array; } double PIController::get_ratio (int fill_level, int period_size) { double offset = fill_level; double this_catch_factor = catch_factor; double this_catch_factor2 = catch_factor2 * 4096.0/(double)period_size; // Save offset. if( fir_empty ) { for (int i = 0; i < smooth_size; i++) { offset_array[i] = offset; } fir_empty = false; } else { offset_array[(offset_differential_index++) % smooth_size] = offset; } // Build the mean of the windowed offset array basically fir lowpassing. smooth_offset = 0.0; for (int i = 0; i < smooth_size; i++) { smooth_offset += offset_array[(i + offset_differential_index - 1) % smooth_size] * window_array[i]; } smooth_offset /= double(smooth_size); // This is the integral of the smoothed_offset offset_integral += smooth_offset; std::cerr << smooth_offset << " "; // Clamp offset : the smooth offset still contains unwanted noise which would go straigth onto the resample coeff. // It only used in the P component and the I component is used for the fine tuning anyways. if (fabs(smooth_offset) < pclamp) smooth_offset = 0.0; smooth_offset += (static_resample_factor - resample_mean) * this_catch_factor; // Ok, now this is the PI controller. // u(t) = K * (e(t) + 1/T \int e(t') dt') // Kp = 1/catch_factor and T = catch_factor2 Ki = Kp/T current_resample_factor = static_resample_factor - smooth_offset / this_catch_factor - offset_integral / this_catch_factor / this_catch_factor2; // Now quantize this value around resample_mean, so that the noise which is in the integral component doesnt hurt. current_resample_factor = floor((current_resample_factor - resample_mean) * controlquant + 0.5) / controlquant + resample_mean; // Calculate resample_mean so we can init ourselves to saner values. // resample_mean = 0.9999 * resample_mean + 0.0001 * current_resample_factor; resample_mean = (1.0-0.01) * resample_mean + 0.01 * current_resample_factor; std::cerr << fill_level << " " << smooth_offset << " " << offset_integral << " " << current_resample_factor << " " << resample_mean << "\n"; return current_resample_factor; } void PIController::out_of_bounds() { int i; // Set the resample_rate... we need to adjust the offset integral, to do this. // first look at the PI controller, this code is just a special case, which should never execute once // everything is swung in. offset_integral = - (resample_mean - static_resample_factor) * catch_factor * catch_factor2; // Also clear the array. we are beginning a new control cycle. for (i = 0; i < smooth_size; i++) { offset_array[i] = 0.0; } fir_empty = false; } PIChaser::PIChaser() { pic = new PIController( 1.0, 16 ); array_index = 0; for( int i=0; ireset(1.0); } PIChaser::~PIChaser() { delete pic; } double PIChaser::get_ratio(nframes64_t chasetime_measured, nframes64_t chasetime, nframes64_t slavetime_measured, nframes64_t slavetime, bool in_control, int period_size ) { feed_estimator( chasetime_measured, chasetime ); std::cerr << (double)chasetime_measured/48000.0 << " " << chasetime << " " << slavetime << " "; double crude = get_estimate(); double fine; nframes64_t massaged_chasetime = chasetime + (nframes64_t)( (double)(slavetime_measured - chasetime_measured) * crude ); fine = pic->get_ratio( slavetime - massaged_chasetime, period_size ); if (in_control) { if (fabs(fine-crude) > crude*speed_threshold) { std::cout << "reset to " << crude << " fine = " << fine << "\n"; pic->reset( crude ); speed = crude; } else { speed = fine; } if (abs(chasetime-slavetime) > pos_threshold) { pic->reset( crude ); speed = crude; want_locate_val = chasetime; std::cout << "we are off by " << chasetime-slavetime << " want_locate:" << chasetime << "\n"; } else { want_locate_val = 0; } } else { std::cout << "not in control..." << crude << "\n"; speed = crude; pic->reset( crude ); } return speed; } void PIChaser::feed_estimator( nframes64_t realtime, nframes64_t chasetime ) { array_index += 1; realtime_stamps [ array_index%ESTIMATOR_SIZE ] = realtime; chasetime_stamps[ array_index%ESTIMATOR_SIZE ] = chasetime; } double PIChaser::get_estimate() { double est = 0; int num=0; int i; nframes64_t n1_realtime; nframes64_t n1_chasetime; for( i=(array_index + 1); i<=(array_index + ESTIMATOR_SIZE); i++ ) { if( realtime_stamps[(i)%ESTIMATOR_SIZE] ) { n1_realtime = realtime_stamps[(i)%ESTIMATOR_SIZE]; n1_chasetime = chasetime_stamps[(i)%ESTIMATOR_SIZE]; i+=1; break; } } for( ; i<=(array_index + ESTIMATOR_SIZE); i++ ) { if( realtime_stamps[(i)%ESTIMATOR_SIZE] ) { if( (realtime_stamps[(i)%ESTIMATOR_SIZE] - n1_realtime) > 200 ) { nframes64_t n_realtime = realtime_stamps[(i)%ESTIMATOR_SIZE]; nframes64_t n_chasetime = chasetime_stamps[(i)%ESTIMATOR_SIZE]; est += ((double)( n_chasetime - n1_chasetime )) / ((double)( n_realtime - n1_realtime )); n1_realtime = n_realtime; n1_chasetime = n_chasetime; num += 1; } } } if(num) return est/(double)num; else return 0.0; }