/* Copyright (C) 2014 Paul Davis Author: David Robillard This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include "pbd/control_math.h" #include "ardour/amp.h" #include "ardour/dB.h" #include "ardour/parameter_descriptor.h" #include "ardour/rc_configuration.h" #include "ardour/types.h" #include "ardour/utils.h" #include "pbd/i18n.h" namespace ARDOUR { ParameterDescriptor::ParameterDescriptor(const Evoral::Parameter& parameter) : Evoral::ParameterDescriptor() , key((uint32_t)-1) , datatype(Variant::NOTHING) , type((AutomationType)parameter.type()) , unit(NONE) , step(0) , smallstep(0) , largestep(0) , integer_step(parameter.type() >= MidiCCAutomation && parameter.type() <= MidiChannelPressureAutomation) , sr_dependent(false) , enumeration(false) { ScalePoints sp; /* Note: defaults in Evoral::ParameterDescriptor */ switch((AutomationType)parameter.type()) { case GainAutomation: case BusSendLevel: upper = Config->get_max_gain(); normal = 1.0f; break; case BusSendEnable: normal = 1.0f; toggled = true; break; case TrimAutomation: upper = 10; // +20dB lower = .1; // -20dB normal = 1.0f; logarithmic = true; break; case PanAzimuthAutomation: normal = 0.5f; // there really is no _normal but this works for stereo, sort of upper = 1.0f; break; case PanWidthAutomation: lower = -1.0; upper = 1.0; normal = 0.0f; break; case RecEnableAutomation: case RecSafeAutomation: lower = 0.0; upper = 1.0; toggled = true; break; case FadeInAutomation: case FadeOutAutomation: case EnvelopeAutomation: upper = 2.0f; normal = 1.0f; break; case SoloAutomation: case MuteAutomation: upper = 1.0f; normal = 0.0f; toggled = true; break; case MidiCCAutomation: case MidiPgmChangeAutomation: case MidiChannelPressureAutomation: case MidiNotePressureAutomation: lower = 0.0; normal = 0.0; upper = 127.0; print_fmt = "%.0f"; break; case MidiPitchBenderAutomation: lower = 0.0; normal = 8192.0; upper = 16383.0; print_fmt = "%.0f"; break; case PhaseAutomation: toggled = true; scale_points = boost::shared_ptr(new ScalePoints()); scale_points->insert (std::make_pair (_("Normal"), 0)); scale_points->insert (std::make_pair (_("Invert"), 1)); break; case MonitoringAutomation: enumeration = true; integer_step = true; lower = MonitorAuto; upper = MonitorDisk; /* XXX bump when we add MonitorCue */ scale_points = boost::shared_ptr(new ScalePoints()); scale_points->insert (std::make_pair (_("Auto"), MonitorAuto)); scale_points->insert (std::make_pair (_("Input"), MonitorInput)); scale_points->insert (std::make_pair (_("Disk"), MonitorDisk)); break; case SoloIsolateAutomation: case SoloSafeAutomation: toggled = true; break; default: break; } update_steps(); } ParameterDescriptor::ParameterDescriptor() : Evoral::ParameterDescriptor() , key((uint32_t)-1) , datatype(Variant::NOTHING) , type(NullAutomation) , unit(NONE) , step(0) , smallstep(0) , largestep(0) , integer_step(false) , sr_dependent(false) , enumeration(false) {} void ParameterDescriptor::update_steps() { /* sanitize flags */ if (toggled || enumeration) { logarithmic = false; } if (logarithmic && (upper <= lower || lower * upper <= 0)) { logarithmic = false; } if (rangesteps < 2) { rangesteps = 0; } if (unit == ParameterDescriptor::MIDI_NOTE) { step = smallstep = 1; // semitone largestep = 12; // octave } else if (type == GainAutomation || type == TrimAutomation) { /* dB_coeff_step gives a step normalized for [0, max_gain]. This is like "slider position", so we convert from "slider position" to gain to have the correct unit here. */ largestep = position_to_gain (dB_coeff_step(upper)); step = position_to_gain (largestep / 10.0); smallstep = step; } else if (rangesteps > 1) { const float delta = upper - lower; step = smallstep = (delta / (rangesteps - 1)); // XXX largestep = std::min ((delta / 5.0f), 10.f * smallstep); // XXX if (logarithmic) { smallstep = smallstep / logf (rangesteps); // XXX step = step / logf (rangesteps); largestep = largestep / logf (rangesteps); } else if (integer_step) { smallstep = 1.0; step = std::max(1.f, rintf (rangesteps)); largestep = std::max(1.f, rintf (largestep)); } } else { const float delta = upper - lower; /* 30 happens to be the total number of steps for a fader with default max gain of 2.0 (6 dB), so we use 30 here too for consistency. */ step = smallstep = (delta / 300.0f); largestep = (delta / 30.0f); if (logarithmic) { /* Steps are linear, but we map them with pow like values (in internal_to_interface). Thus, they are applied exponentially, which means too few steps. So, divide to get roughly the desired number of steps (30). This is not mathematically precise but seems to be about right for the controls I tried. If you're reading this, you've probably found a case where that isn't true, and somebody needs to sit down with a piece of paper and actually do the math. */ smallstep = smallstep / logf(30.0f); step = step / logf(30.0f); largestep = largestep / logf(30.0f); } else if (integer_step) { smallstep = 1.0; step = std::max(1.f, rintf (step)); largestep = std::max(1.f, rintf (largestep)); } } } std::string ParameterDescriptor::midi_note_name (const uint8_t b, bool translate) { char buf[16]; if (b > 127) { snprintf(buf, sizeof(buf), "%d", b); return buf; } static const char* en_notes[] = { "C", "C#", "D", "D#", "E", "F", "F#", "G", "G#", "A", "A#", "B" }; static const char* notes[] = { S_("Note|C"), S_("Note|C#"), S_("Note|D"), S_("Note|D#"), S_("Note|E"), S_("Note|F"), S_("Note|F#"), S_("Note|G"), S_("Note|G#"), S_("Note|A"), S_("Note|A#"), S_("Note|B") }; /* MIDI note 0 is in octave -1 (in scientific pitch notation) */ const int octave = b / 12 - 1; const size_t p = b % 12; snprintf (buf, sizeof (buf), "%s%d", translate ? notes[p] : en_notes[p], octave); return buf; } std::string ParameterDescriptor::normalize_note_name(const std::string& name) { // Remove whitespaces and convert to lower case for a more resilient parser return boost::to_lower_copy(boost::erase_all_copy(name, " ")); }; ParameterDescriptor::NameNumMap ParameterDescriptor::build_midi_name2num() { NameNumMap name2num; for (uint8_t num = 0; num < 128; num++) { name2num[normalize_note_name(midi_note_name(num))] = num; } return name2num; } uint8_t ParameterDescriptor::midi_note_num (const std::string& name) { static NameNumMap name2num = build_midi_name2num(); uint8_t num = -1; // -1 (or 255) is returned in case of failure NameNumMap::const_iterator it = name2num.find(normalize_note_name(name)); if (it != name2num.end()) num = it->second; return num; } float ParameterDescriptor::to_interface (float val) const { val = std::min (upper, std::max (lower, val)); switch(type) { case GainAutomation: case BusSendLevel: case EnvelopeAutomation: val = gain_to_slider_position_with_max (val, upper); break; case TrimAutomation: { const float lower_db = accurate_coefficient_to_dB (lower); const float range_db = accurate_coefficient_to_dB (upper) - lower_db; val = (accurate_coefficient_to_dB (val) - lower_db) / range_db; } break; case PanAzimuthAutomation: case PanElevationAutomation: val = val; break; case PanWidthAutomation: val = .5f + val * .5f; break; default: if (logarithmic) { if (rangesteps > 1) { val = logscale_to_position_with_steps (val, lower, upper, rangesteps); } else { val = logscale_to_position (val, lower, upper); } } else if (toggled) { return (val - lower) / (upper - lower) >= 0.5f ? 1.f : 0.f; } else if (integer_step) { /* evenly-divide steps. lower,upper inclusive * e.g. 5 integers 0,1,2,3,4 are mapped to a fader * [0.0 ... 0.2 | 0.2 ... 0.4 | 0.4 ... 0.6 | 0.6 ... 0.8 | 0.8 ... 1.0] * 0 1 2 3 4 * 0.1 0.3 0.5 0.7 0.9 */ val = (val + .5f - lower) / (1.f + upper - lower); } else { val = (val - lower) / (upper - lower); } break; } val = std::max (0.f, std::min (1.f, val)); return val; } float ParameterDescriptor::from_interface (float val) const { val = std::max (0.f, std::min (1.f, val)); switch(type) { case GainAutomation: case EnvelopeAutomation: case BusSendLevel: val = slider_position_to_gain_with_max (val, upper); break; case TrimAutomation: { const float lower_db = accurate_coefficient_to_dB (lower); const float range_db = accurate_coefficient_to_dB (upper) - lower_db; val = dB_to_coefficient (lower_db + val * range_db); } break; case PanAzimuthAutomation: case PanElevationAutomation: val = val; break; case PanWidthAutomation: val = 2.f * val - 1.f; break; default: if (logarithmic) { assert (!toggled && !integer_step); // update_steps() should prevent that. if (rangesteps > 1) { val = position_to_logscale_with_steps (val, lower, upper, rangesteps); } else { val = position_to_logscale (val, lower, upper); } } else if (toggled) { val = val > 0 ? upper : lower; } else if (integer_step) { /* upper and lower are inclusive. use evenly-divided steps * e.g. 5 integers 0,1,2,3,4 are mapped to a fader * [0.0 .. 0.2 | 0.2 .. 0.4 | 0.4 .. 0.6 | 0.6 .. 0.8 | 0.8 .. 1.0] */ val = round (lower + val * (1.f + upper - lower) - .5f); } else if (rangesteps > 1) { /* similar to above, but for float controls */ val = floor (val * (rangesteps - 1.f)) / (rangesteps - 1.f); // XXX val = val * (upper - lower) + lower; } else { val = val * (upper - lower) + lower; } break; } val = std::min (upper, std::max (lower, val)); return val; } bool ParameterDescriptor::is_linear () const { if (logarithmic) { return false; } switch(type) { case GainAutomation: case EnvelopeAutomation: case BusSendLevel: return false; default: break; } return true; } float ParameterDescriptor::compute_delta (float from, float to) const { if (is_linear ()) { return to - from; } if (from == 0) { return 0; } return to / from; } float ParameterDescriptor::apply_delta (float val, float delta) const { if (is_linear ()) { return val + delta; } else { return val * delta; } } } // namespace ARDOUR