/* Copyright (C) 2014 Paul Davis Author: David Robillard This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include "ardour/amp.h" #include "ardour/dB.h" #include "ardour/parameter_descriptor.h" #include "ardour/rc_configuration.h" #include "ardour/types.h" #include "ardour/utils.h" #include "pbd/i18n.h" namespace ARDOUR { ParameterDescriptor::ParameterDescriptor(const Evoral::Parameter& parameter) : Evoral::ParameterDescriptor() , key((uint32_t)-1) , datatype(Variant::NOTHING) , type((AutomationType)parameter.type()) , unit(NONE) , step(0) , smallstep(0) , largestep(0) , integer_step(parameter.type() >= MidiCCAutomation && parameter.type() <= MidiChannelPressureAutomation) , logarithmic(false) , sr_dependent(false) , min_unbound(0) , max_unbound(0) , enumeration(false) { ScalePoints sp; switch((AutomationType)parameter.type()) { case GainAutomation: upper = Config->get_max_gain(); normal = 1.0f; break; case BusSendLevel: upper = Config->get_max_gain (); normal = 1.0f; break; case BusSendEnable: normal = 1.0f; toggled = true; break; case TrimAutomation: upper = 10; // +20dB lower = .1; // -20dB normal = 1.0f; break; case PanAzimuthAutomation: normal = 0.5f; // there really is no _normal but this works for stereo, sort of upper = 1.0f; break; case PanWidthAutomation: lower = -1.0; upper = 1.0; normal = 0.0f; break; case RecEnableAutomation: case RecSafeAutomation: lower = 0.0; upper = 1.0; toggled = true; break; case PluginAutomation: case FadeInAutomation: case FadeOutAutomation: case EnvelopeAutomation: upper = 2.0f; normal = 1.0f; break; case SoloAutomation: case MuteAutomation: upper = 1.0f; normal = 0.0f; toggled = true; break; case MidiCCAutomation: case MidiPgmChangeAutomation: case MidiChannelPressureAutomation: case MidiNotePressureAutomation: lower = 0.0; normal = 0.0; upper = 127.0; break; case MidiPitchBenderAutomation: lower = 0.0; normal = 8192.0; upper = 16383.0; break; case PhaseAutomation: toggled = true; break; case MonitoringAutomation: enumeration = true; integer_step = true; lower = MonitorAuto; upper = MonitorDisk; /* XXX bump when we add MonitorCue */ break; case SoloIsolateAutomation: toggled = true; break; case SoloSafeAutomation: toggled = true; break; default: break; } update_steps(); } ParameterDescriptor::ParameterDescriptor() : Evoral::ParameterDescriptor() , key((uint32_t)-1) , datatype(Variant::NOTHING) , type(NullAutomation) , unit(NONE) , step(0) , smallstep(0) , largestep(0) , integer_step(false) , logarithmic(false) , sr_dependent(false) , min_unbound(0) , max_unbound(0) , enumeration(false) {} void ParameterDescriptor::update_steps() { if (unit == ParameterDescriptor::MIDI_NOTE) { step = smallstep = 1; // semitone largestep = 12; // octave } else if (type == GainAutomation || type == TrimAutomation) { /* dB_coeff_step gives a step normalized for [0, max_gain]. This is like "slider position", so we convert from "slider position" to gain to have the correct unit here. */ largestep = slider_position_to_gain(dB_coeff_step(upper)); step = slider_position_to_gain(largestep / 10.0); smallstep = step; } else { /* note that LV2Plugin::get_parameter_descriptor () * overrides this is lv2:rangeStep is set for a port. */ const float delta = upper - lower; /* 30 happens to be the total number of steps for a fader with default max gain of 2.0 (6 dB), so we use 30 here too for consistency. */ step = smallstep = (delta / 300.0f); largestep = (delta / 30.0f); if (logarithmic) { /* Steps are linear, but we map them with pow like values (in internal_to_interface). Thus, they are applied exponentially, which means too few steps. So, divide to get roughly the desired number of steps (30). This is not mathematically precise but seems to be about right for the controls I tried. If you're reading this, you've probably found a case where that isn't true, and somebody needs to sit down with a piece of paper and actually do the math. */ smallstep = smallstep / logf(30.0f); step = step / logf(30.0f); largestep = largestep / logf(30.0f); } else if (integer_step) { smallstep = 1.0; step = std::max(1.f, rintf (step)); largestep = std::max(1.f, rintf (largestep)); } } } std::string ParameterDescriptor::midi_note_name (const uint8_t b) { char buf[16]; if (b > 127) { snprintf(buf, sizeof(buf), "%d", b); return buf; } static const char* notes[] = { S_("Note|C"), S_("Note|C#"), S_("Note|D"), S_("Note|D#"), S_("Note|E"), S_("Note|F"), S_("Note|F#"), S_("Note|G"), S_("Note|G#"), S_("Note|A"), S_("Note|A#"), S_("Note|B") }; /* MIDI note 0 is in octave -1 (in scientific pitch notation) */ const int octave = b / 12 - 1; snprintf (buf, sizeof (buf), "%s%d", notes[b % 12], octave); return buf; } } // namespace ARDOUR