/* Copyright (C) 2010 Paul Davis This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include "pbd/error.h" #include "pbd/xml++.h" #include "ardour/amp.h" #include "ardour/debug.h" #include "ardour/audio_buffer.h" #include "ardour/monitor_processor.h" #include "ardour/session.h" #include "pbd/i18n.h" using namespace ARDOUR; using namespace PBD; using namespace std; /* specialize for bool because of set_value() semantics */ namespace ARDOUR { template<> void MPControl::set_value (double v, PBD::Controllable::GroupControlDisposition gcd) { bool newval = fabs (v) >= 0.5; if (newval != _value) { _value = newval; Changed (true, gcd); /* EMIT SIGNAL */ } } } MonitorProcessor::MonitorProcessor (Session& s) : Processor (s, X_("MonitorOut")) , solo_cnt (0) , _monitor_active (false) , _dim_all_ptr (new MPControl (false, _("monitor dim"), Controllable::Toggle)) , _cut_all_ptr (new MPControl (false, _("monitor cut"), Controllable::Toggle)) , _mono_ptr (new MPControl (false, _("monitor mono"), Controllable::Toggle)) , _dim_level_ptr (new MPControl /* default is -12dB, range is -20dB to 0dB */ (dB_to_coefficient(-12.0), _("monitor dim level"), Controllable::Flag (0), dB_to_coefficient(-20.0), dB_to_coefficient (0.0))) , _solo_boost_level_ptr (new MPControl /* default is 0dB, range is 0dB to +20dB */ (dB_to_coefficient(0.0), _("monitor solo boost level"), Controllable::Flag (0), dB_to_coefficient(0.0), dB_to_coefficient(10.0))) , _dim_all_control (_dim_all_ptr) , _cut_all_control (_cut_all_ptr) , _mono_control (_mono_ptr) , _dim_level_control (_dim_level_ptr) , _solo_boost_level_control (_solo_boost_level_ptr) , _dim_all (*_dim_all_ptr) , _cut_all (*_cut_all_ptr) , _mono (*_mono_ptr) , _dim_level (*_dim_level_ptr) , _solo_boost_level (*_solo_boost_level_ptr) { } MonitorProcessor::~MonitorProcessor () { allocate_channels (0); } void MonitorProcessor::allocate_channels (uint32_t size) { while (_channels.size() > size) { if (_channels.back()->soloed) { if (solo_cnt > 0) { --solo_cnt; } } ChannelRecord* cr = _channels.back(); _channels.pop_back(); delete cr; } uint32_t n = _channels.size() + 1; while (_channels.size() < size) { _channels.push_back (new ChannelRecord (n)); } } int MonitorProcessor::set_state (const XMLNode& node, int version) { int ret = Processor::set_state (node, version); if (ret != 0) { return ret; } std::string type_name; if (!node.get_property (X_("type"), type_name)) { error << string_compose (X_("programming error: %1"), X_("MonitorProcessor XML settings have no type information")) << endmsg; return -1; } if (type_name != X_("monitor")) { error << string_compose (X_("programming error: %1"), X_("MonitorProcessor given unknown XML settings")) << endmsg; return -1; } uint32_t channels = 0; if (!node.get_property (X_("channels"), channels)) { error << string_compose (X_("programming error: %1"), X_("MonitorProcessor XML settings are missing a channel cnt")) << endmsg; return -1; } allocate_channels (channels); // need to check that these conversions are working as expected gain_t val; if (node.get_property (X_("dim-level"), val)) { _dim_level = val; } if (node.get_property (X_("solo-boost-level"), val)) { _solo_boost_level = val; } bool bool_val; if (node.get_property (X_("cut-all"), bool_val)) { _cut_all = bool_val; } if (node.get_property (X_("dim-all"), bool_val)) { _dim_all = bool_val; } if (node.get_property (X_("mono"), bool_val)) { _mono = bool_val; } for (XMLNodeList::const_iterator i = node.children().begin(); i != node.children().end(); ++i) { if ((*i)->name() == X_("Channel")) { uint32_t chn; if (!(*i)->get_property (X_("id"), chn)) { error << string_compose (X_("programming error: %1"), X_("MonitorProcessor XML settings are missing an ID")) << endmsg; return -1; } if (chn >= _channels.size()) { error << string_compose (X_("programming error: %1"), X_("MonitorProcessor XML settings has an illegal channel count")) << endmsg; return -1; } ChannelRecord& cr (*_channels[chn]); bool gain_coeff_zero; if ((*i)->get_property ("cut", gain_coeff_zero)) { if (gain_coeff_zero) { cr.cut = GAIN_COEFF_ZERO; } else { cr.cut = GAIN_COEFF_UNITY; } } bool dim; if ((*i)->get_property ("dim", dim)) { cr.dim = dim; } bool invert_polarity; if ((*i)->get_property ("invert", invert_polarity)) { if (invert_polarity) { cr.polarity = -1.0f; } else { cr.polarity = 1.0f; } } bool soloed; if ((*i)->get_property ("solo", soloed)) { cr.soloed = soloed; } } } /* reset solo cnt */ solo_cnt = 0; for (vector::const_iterator x = _channels.begin(); x != _channels.end(); ++x) { if ((*x)->soloed) { solo_cnt++; } } update_monitor_state (); return 0; } XMLNode& MonitorProcessor::state () { XMLNode& node(Processor::state ()); /* this replaces any existing "type" property */ node.set_property (X_("type"), X_("monitor")); node.set_property (X_ ("dim-level"), (float)_dim_level.val ()); node.set_property (X_ ("solo-boost-level"), (float)_solo_boost_level.val ()); node.set_property (X_("cut-all"), _cut_all.val()); node.set_property (X_("dim-all"), _dim_all.val()); node.set_property (X_("mono"), _mono.val()); node.set_property (X_("channels"), (uint32_t)_channels.size ()); XMLNode* chn_node; uint32_t chn = 0; for (vector::const_iterator x = _channels.begin (); x != _channels.end (); ++x, ++chn) { chn_node = new XMLNode (X_("Channel")); chn_node->set_property ("id", chn); // implicitly cast these to bool chn_node->set_property (X_("cut"), (*x)->cut != GAIN_COEFF_UNITY); chn_node->set_property (X_("invert"), (*x)->polarity != GAIN_COEFF_UNITY); chn_node->set_property (X_("dim"), (*x)->dim == true); chn_node->set_property (X_("solo"), (*x)->soloed == true); node.add_child_nocopy (*chn_node); } return node; } void MonitorProcessor::run (BufferSet& bufs, samplepos_t /*start_sample*/, samplepos_t /*end_sample*/, double /*speed*/, pframes_t nframes, bool /*result_required*/) { uint32_t chn = 0; gain_t target_gain; gain_t dim_level_this_time = _dim_level; gain_t global_cut = (_cut_all ? GAIN_COEFF_ZERO : GAIN_COEFF_UNITY); gain_t global_dim = (_dim_all ? dim_level_this_time : GAIN_COEFF_UNITY); gain_t solo_boost; if (_session.listening() || _session.soloing()) { solo_boost = _solo_boost_level; } else { solo_boost = GAIN_COEFF_UNITY; } for (BufferSet::audio_iterator b = bufs.audio_begin(); b != bufs.audio_end(); ++b) { /* don't double-scale by both track dim and global dim coefficients */ gain_t dim_level = (global_dim == GAIN_COEFF_UNITY ? (_channels[chn]->dim ? dim_level_this_time : GAIN_COEFF_UNITY) : GAIN_COEFF_UNITY); if (_channels[chn]->soloed) { target_gain = _channels[chn]->polarity * _channels[chn]->cut * dim_level * global_cut * global_dim * solo_boost; } else { if (solo_cnt == 0) { target_gain = _channels[chn]->polarity * _channels[chn]->cut * dim_level * global_cut * global_dim * solo_boost; } else { target_gain = GAIN_COEFF_ZERO; } } if (target_gain != _channels[chn]->current_gain || target_gain != GAIN_COEFF_UNITY) { _channels[chn]->current_gain = Amp::apply_gain (*b, _session.nominal_sample_rate(), nframes, _channels[chn]->current_gain, target_gain); } ++chn; } if (_mono) { DEBUG_TRACE (DEBUG::Monitor, "mono-izing\n"); /* chn is now the number of channels, use as a scaling factor when mixing */ gain_t scale = 1.f / (float)chn; BufferSet::audio_iterator b = bufs.audio_begin(); AudioBuffer& ab (*b); Sample* buf = ab.data(); /* scale the first channel */ for (pframes_t n = 0; n < nframes; ++n) { buf[n] *= scale; } /* add every other channel into the first channel's buffer */ ++b; for (; b != bufs.audio_end(); ++b) { AudioBuffer& ob (*b); Sample* obuf = ob.data (); for (pframes_t n = 0; n < nframes; ++n) { buf[n] += obuf[n] * scale; } } /* copy the first channel to every other channel's buffer */ b = bufs.audio_begin(); ++b; for (; b != bufs.audio_end(); ++b) { AudioBuffer& ob (*b); Sample* obuf = ob.data (); memcpy (obuf, buf, sizeof (Sample) * nframes); } } } bool MonitorProcessor::configure_io (ChanCount in, ChanCount out) { allocate_channels (in.n_audio()); return Processor::configure_io (in, out); } bool MonitorProcessor::can_support_io_configuration (const ChanCount& in, ChanCount& out) { out = in; return true; } void MonitorProcessor::set_polarity (uint32_t chn, bool invert) { if (invert) { _channels[chn]->polarity = -1.0f; } else { _channels[chn]->polarity = 1.0f; } update_monitor_state (); } void MonitorProcessor::set_dim (uint32_t chn, bool yn) { _channels[chn]->dim = yn; update_monitor_state (); } void MonitorProcessor::set_cut (uint32_t chn, bool yn) { if (yn) { _channels[chn]->cut = GAIN_COEFF_ZERO; } else { _channels[chn]->cut = GAIN_COEFF_UNITY; } update_monitor_state (); } void MonitorProcessor::set_solo (uint32_t chn, bool solo) { if (solo != _channels[chn]->soloed) { _channels[chn]->soloed = solo; if (solo) { solo_cnt++; } else { if (solo_cnt > 0) { solo_cnt--; } } } update_monitor_state (); } void MonitorProcessor::set_mono (bool yn) { _mono = yn; update_monitor_state (); } void MonitorProcessor::set_cut_all (bool yn) { _cut_all = yn; update_monitor_state (); } void MonitorProcessor::set_dim_all (bool yn) { _dim_all = yn; update_monitor_state (); } bool MonitorProcessor::display_to_user () const { return false; } bool MonitorProcessor::soloed (uint32_t chn) const { return _channels[chn]->soloed; } bool MonitorProcessor::inverted (uint32_t chn) const { return _channels[chn]->polarity < 0.0f; } bool MonitorProcessor::cut (uint32_t chn) const { return _channels[chn]->cut == GAIN_COEFF_ZERO; } bool MonitorProcessor::dimmed (uint32_t chn) const { return _channels[chn]->dim; } bool MonitorProcessor::mono () const { return _mono; } bool MonitorProcessor::dim_all () const { return _dim_all; } bool MonitorProcessor::cut_all () const { return _cut_all; } void MonitorProcessor::update_monitor_state () { bool en = false; if (_cut_all || _dim_all || _mono) { en = true; } const uint32_t nchans = _channels.size(); for (uint32_t i = 0; i < nchans && !en; ++i) { if (cut (i) || dimmed (i) || soloed (i) || inverted (i)) { en = true; break; } } if (_monitor_active != en) { _monitor_active = en; _session.MonitorChanged(); } } boost::shared_ptr MonitorProcessor::channel_cut_control (uint32_t chn) const { if (chn < _channels.size()) { return _channels[chn]->cut_control; } return boost::shared_ptr(); } boost::shared_ptr MonitorProcessor::channel_dim_control (uint32_t chn) const { if (chn < _channels.size()) { return _channels[chn]->dim_control; } return boost::shared_ptr(); } boost::shared_ptr MonitorProcessor::channel_polarity_control (uint32_t chn) const { if (chn < _channels.size()) { return _channels[chn]->polarity_control; } return boost::shared_ptr(); } boost::shared_ptr MonitorProcessor::channel_solo_control (uint32_t chn) const { if (chn < _channels.size()) { return _channels[chn]->soloed_control; } return boost::shared_ptr(); } MonitorProcessor::ChannelRecord::ChannelRecord (uint32_t chn) : current_gain (GAIN_COEFF_UNITY) , cut_ptr (new MPControl (1.0, string_compose (_("cut control %1"), chn), PBD::Controllable::GainLike)) , dim_ptr (new MPControl (false, string_compose (_("dim control"), chn), PBD::Controllable::Toggle)) , polarity_ptr (new MPControl (1.0, string_compose (_("polarity control"), chn), PBD::Controllable::Toggle, -1, 1)) , soloed_ptr (new MPControl (false, string_compose (_("solo control"), chn), PBD::Controllable::Toggle)) , cut_control (cut_ptr) , dim_control (dim_ptr) , polarity_control (polarity_ptr) , soloed_control (soloed_ptr) , cut (*cut_ptr) , dim (*dim_ptr) , polarity (*polarity_ptr) , soloed (*soloed_ptr) { }