/* Copyright (C) 2006 Paul Davis Author: David Robillard This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #ifdef COMPILER_MSVC #include // 'std::isinf()' and 'std::isnan()' are not available in MSVC. #define isinf_local(val) !((bool)_finite((double)val)) #define isnan_local(val) (bool)_isnan((double)val) #else #define isinf_local std::isinf #define isnan_local std::isnan #endif #include "pbd/enumwriter.h" #include "pbd/types_convert.h" #include "evoral/midi_util.h" #include "ardour/amp.h" #include "ardour/beats_samples_converter.h" #include "ardour/buffer_set.h" #include "ardour/debug.h" #include "ardour/delivery.h" #include "ardour/disk_reader.h" #include "ardour/disk_writer.h" #include "ardour/event_type_map.h" #include "ardour/meter.h" #include "ardour/midi_playlist.h" #include "ardour/midi_port.h" #include "ardour/midi_region.h" #include "ardour/midi_track.h" #include "ardour/monitor_control.h" #include "ardour/parameter_types.h" #include "ardour/port.h" #include "ardour/processor.h" #include "ardour/profile.h" #include "ardour/route_group_specialized.h" #include "ardour/session.h" #include "ardour/session_playlists.h" #include "ardour/types_convert.h" #include "ardour/utils.h" #include "pbd/i18n.h" namespace ARDOUR { class InterThreadInfo; class MidiSource; class Region; class SMFSource; } using namespace std; using namespace ARDOUR; using namespace PBD; MidiTrack::MidiTrack (Session& sess, string name, TrackMode mode) : Track (sess, name, PresentationInfo::MidiTrack, mode, DataType::MIDI) , _immediate_events(6096) // FIXME: size? , _immediate_event_buffer(6096) , _step_edit_ring_buffer(64) // FIXME: size? , _note_mode (Sustained) , _step_editing (false) , _input_active (true) { _session.SessionLoaded.connect_same_thread (*this, boost::bind (&MidiTrack::restore_controls, this)); } MidiTrack::~MidiTrack () { } int MidiTrack::init () { if (Track::init ()) { return -1; } _input->changed.connect_same_thread (*this, boost::bind (&MidiTrack::track_input_active, this, _1, _2)); _disk_writer->set_note_mode (_note_mode); _disk_reader->reset_tracker (); _disk_writer->DataRecorded.connect_same_thread (*this, boost::bind (&MidiTrack::data_recorded, this, _1)); return 0; } void MidiTrack::data_recorded (boost::weak_ptr src) { DataRecorded (src); /* EMIT SIGNAL */ } bool MidiTrack::can_be_record_safe () { if (_step_editing) { return false; } return Track::can_be_record_safe (); } bool MidiTrack::can_be_record_enabled () { if (_step_editing) { return false; } return Track::can_be_record_enabled (); } int MidiTrack::set_state (const XMLNode& node, int version) { /* This must happen before Track::set_state(), as there will be a buffer fill during that call, and we must fill buffers using the correct _note_mode. */ if (!node.get_property (X_("note-mode"), _note_mode)) { _note_mode = Sustained; } if (Track::set_state (node, version)) { return -1; } // No destructive MIDI tracks (yet?) _mode = Normal; bool yn; if (node.get_property ("input-active", yn)) { set_input_active (yn); } ChannelMode playback_channel_mode = AllChannels; ChannelMode capture_channel_mode = AllChannels; node.get_property ("playback-channel-mode", playback_channel_mode); node.get_property ("capture-channel-mode", capture_channel_mode); if (node.get_property ("channel-mode", playback_channel_mode)) { /* 3.0 behaviour where capture and playback modes were not separated */ capture_channel_mode = playback_channel_mode; } XMLProperty const * prop; unsigned int playback_channel_mask = 0xffff; unsigned int capture_channel_mask = 0xffff; if ((prop = node.property ("playback-channel-mask")) != 0) { sscanf (prop->value().c_str(), "0x%x", &playback_channel_mask); } if ((prop = node.property ("capture-channel-mask")) != 0) { sscanf (prop->value().c_str(), "0x%x", &capture_channel_mask); } if ((prop = node.property ("channel-mask")) != 0) { sscanf (prop->value().c_str(), "0x%x", &playback_channel_mask); capture_channel_mask = playback_channel_mask; } set_playback_channel_mode (playback_channel_mode, playback_channel_mask); set_capture_channel_mode (capture_channel_mode, capture_channel_mask); pending_state = const_cast (&node); if (_session.state_of_the_state() & Session::Loading) { _session.StateReady.connect_same_thread ( *this, boost::bind (&MidiTrack::set_state_part_two, this)); } else { set_state_part_two (); } return 0; } XMLNode& MidiTrack::state(bool save_template) { XMLNode& root (Track::state (save_template)); XMLNode* freeze_node; char buf[64]; if (_freeze_record.playlist) { XMLNode* inode; freeze_node = new XMLNode (X_("freeze-info")); freeze_node->set_property ("playlist", _freeze_record.playlist->name()); freeze_node->set_property ("state", _freeze_record.state); for (vector::iterator i = _freeze_record.processor_info.begin(); i != _freeze_record.processor_info.end(); ++i) { inode = new XMLNode (X_("processor")); inode->set_property (X_("id"), id()); inode->add_child_copy ((*i)->state); freeze_node->add_child_nocopy (*inode); } root.add_child_nocopy (*freeze_node); } root.set_property("playback-channel-mode", get_playback_channel_mode()); root.set_property("capture-channel-mode", get_capture_channel_mode()); snprintf (buf, sizeof(buf), "0x%x", get_playback_channel_mask()); root.set_property("playback-channel-mask", std::string(buf)); snprintf (buf, sizeof(buf), "0x%x", get_capture_channel_mask()); root.set_property("capture-channel-mask", std::string(buf)); root.set_property ("note-mode", _note_mode); root.set_property ("step-editing", _step_editing); root.set_property ("input-active", _input_active); for (Controls::const_iterator c = _controls.begin(); c != _controls.end(); ++c) { if (boost::dynamic_pointer_cast(c->second)) { boost::shared_ptr ac = boost::dynamic_pointer_cast (c->second); assert (ac); root.add_child_nocopy (ac->get_state ()); } } return root; } void MidiTrack::set_state_part_two () { XMLNode* fnode; /* This is called after all session state has been restored but before have been made ports and connections are established. */ if (pending_state == 0) { return; } if ((fnode = find_named_node (*pending_state, X_("freeze-info"))) != 0) { _freeze_record.state = Frozen; for (vector::iterator i = _freeze_record.processor_info.begin(); i != _freeze_record.processor_info.end(); ++i) { delete *i; } _freeze_record.processor_info.clear (); std::string str; if (fnode->get_property (X_("playlist"), str)) { boost::shared_ptr pl = _session.playlists->by_name (str); if (pl) { _freeze_record.playlist = boost::dynamic_pointer_cast (pl); } else { _freeze_record.playlist.reset(); _freeze_record.state = NoFreeze; return; } } fnode->get_property (X_("state"), _freeze_record.state); XMLNodeConstIterator citer; XMLNodeList clist = fnode->children(); for (citer = clist.begin(); citer != clist.end(); ++citer) { if ((*citer)->name() != X_("processor")) { continue; } if (!(*citer)->get_property (X_("id"), str)) { continue; } FreezeRecordProcessorInfo* frii = new FreezeRecordProcessorInfo (*((*citer)->children().front()), boost::shared_ptr()); frii->id = str; _freeze_record.processor_info.push_back (frii); } } return; } void MidiTrack::restore_controls () { // TODO order events (CC before PGM to set banks) for (Controls::const_iterator c = _controls.begin(); c != _controls.end(); ++c) { boost::shared_ptr mctrl = boost::dynamic_pointer_cast(c->second); if (mctrl) { mctrl->restore_value(); } } } void MidiTrack::update_controls (BufferSet const& bufs) { const MidiBuffer& buf = bufs.get_midi(0); for (MidiBuffer::const_iterator e = buf.begin(); e != buf.end(); ++e) { const Evoral::Event& ev = *e; const Evoral::Parameter param = midi_parameter(ev.buffer(), ev.size()); const boost::shared_ptr control = automation_control (param); if (control) { double old = control->get_double (false, 0); control->set_double (ev.value(), 0, false); if (old != ev.value()) { control->Changed (false, Controllable::NoGroup); } } } } int MidiTrack::no_roll_unlocked (pframes_t nframes, samplepos_t start_sample, samplepos_t end_sample, bool state_changing) { int ret = Track::no_roll_unlocked (nframes, start_sample, end_sample, state_changing); if (ret == 0 && _step_editing) { push_midi_input_to_step_edit_ringbuffer (nframes); } return ret; } void MidiTrack::realtime_locate () { Glib::Threads::RWLock::ReaderLock lm (_processor_lock, Glib::Threads::TRY_LOCK); if (!lm.locked ()) { return; } for (ProcessorList::iterator i = _processors.begin(); i != _processors.end(); ++i) { (*i)->realtime_locate (); } _disk_reader->reset_tracker (); } void MidiTrack::non_realtime_locate (samplepos_t pos) { Track::non_realtime_locate(pos); boost::shared_ptr playlist = _disk_writer->midi_playlist(); if (!playlist) { return; } /* Get the top unmuted region at this position. */ boost::shared_ptr region = boost::dynamic_pointer_cast( playlist->top_unmuted_region_at(pos)); if (!region) { return; } /* the source may be missing, but the control still referenced in the GUI */ if (!region->midi_source() || !region->model()) { return; } Glib::Threads::Mutex::Lock lm (_control_lock, Glib::Threads::TRY_LOCK); if (!lm.locked()) { return; } /* Update track controllers based on its "automation". */ const samplepos_t origin = region->position() - region->start(); BeatsSamplesConverter bfc(_session.tempo_map(), origin); for (Controls::const_iterator c = _controls.begin(); c != _controls.end(); ++c) { boost::shared_ptr tcontrol; boost::shared_ptr rcontrol; if ((tcontrol = boost::dynamic_pointer_cast(c->second)) && (rcontrol = region->control(tcontrol->parameter()))) { const Temporal::Beats pos_beats = bfc.from(pos - origin); if (rcontrol->list()->size() > 0) { tcontrol->set_value(rcontrol->list()->eval(pos_beats.to_double()), Controllable::NoGroup); } } } } void MidiTrack::push_midi_input_to_step_edit_ringbuffer (samplecnt_t nframes) { PortSet& ports (_input->ports()); for (PortSet::iterator p = ports.begin(DataType::MIDI); p != ports.end(DataType::MIDI); ++p) { Buffer& b (p->get_buffer (nframes)); const MidiBuffer* const mb = dynamic_cast(&b); assert (mb); for (MidiBuffer::const_iterator e = mb->begin(); e != mb->end(); ++e) { const Evoral::Event ev(*e, false); /* note on, since for step edit, note length is determined elsewhere */ if (ev.is_note_on()) { /* we don't care about the time for this purpose */ _step_edit_ring_buffer.write (0, ev.event_type(), ev.size(), ev.buffer()); } } } } void MidiTrack::snapshot_out_of_band_data (samplecnt_t nframes) { _immediate_event_buffer.clear (); if (0 == _immediate_events.read_space()) { return; } assert (nframes > 0); DEBUG_TRACE (DEBUG::MidiIO, string_compose ("%1 has %2 of immediate events to deliver\n", name(), _immediate_events.read_space())); /* write as many of the immediate events as we can, but give "true" as * the last argument ("stop on overflow in destination") so that we'll * ship the rest out next time. * * the Port::port_offset() + (nframes-1) argument puts all these events at the last * possible position of the output buffer, so that we do not * violate monotonicity when writing. Port::port_offset() will * be non-zero if we're in a split process cycle. */ _immediate_events.read (_immediate_event_buffer, 0, 1, Port::port_offset() + nframes - 1, true); } void MidiTrack::write_out_of_band_data (BufferSet& bufs, samplecnt_t nframes) const { MidiBuffer& buf (bufs.get_midi (0)); buf.merge_from (_immediate_event_buffer, nframes); } int MidiTrack::export_stuff (BufferSet& buffers, samplepos_t start, samplecnt_t nframes, boost::shared_ptr endpoint, bool include_endpoint, bool for_export, bool for_freeze) { if (buffers.count().n_midi() == 0) { return -1; } Glib::Threads::RWLock::ReaderLock rlock (_processor_lock); boost::shared_ptr mpl = _disk_writer->midi_playlist(); if (!mpl) { return -2; } buffers.get_midi(0).clear(); if (mpl->read(buffers.get_midi(0), start, nframes, 0) != nframes) { return -1; } //bounce_process (buffers, start, nframes, endpoint, include_endpoint, for_export, for_freeze); return 0; } boost::shared_ptr MidiTrack::bounce (InterThreadInfo& itt) { return bounce_range (_session.current_start_sample(), _session.current_end_sample(), itt, main_outs(), false); } boost::shared_ptr MidiTrack::bounce_range (samplepos_t start, samplepos_t end, InterThreadInfo& itt, boost::shared_ptr endpoint, bool include_endpoint) { vector > srcs; return _session.write_one_track (*this, start, end, false, srcs, itt, endpoint, include_endpoint, false, false); } void MidiTrack::freeze_me (InterThreadInfo& /*itt*/) { std::cerr << "MIDI freeze currently unsupported" << std::endl; } void MidiTrack::unfreeze () { _freeze_record.state = UnFrozen; FreezeChange (); /* EMIT SIGNAL */ } void MidiTrack::set_note_mode (NoteMode m) { _note_mode = m; _disk_writer->set_note_mode(m); } std::string MidiTrack::describe_parameter (Evoral::Parameter param) { const std::string str(instrument_info().get_controller_name(param)); return str.empty() ? Automatable::describe_parameter(param) : str; } void MidiTrack::midi_panic() { DEBUG_TRACE (DEBUG::MidiIO, string_compose ("%1 delivers panic data\n", name())); for (uint8_t channel = 0; channel <= 0xF; channel++) { uint8_t ev[3] = { ((uint8_t) (MIDI_CMD_CONTROL | channel)), ((uint8_t) MIDI_CTL_SUSTAIN), 0 }; write_immediate_event(3, ev); ev[1] = MIDI_CTL_ALL_NOTES_OFF; write_immediate_event(3, ev); ev[1] = MIDI_CTL_RESET_CONTROLLERS; write_immediate_event(3, ev); } } /** \return true on success, false on failure (no buffer space left) */ bool MidiTrack::write_immediate_event(size_t size, const uint8_t* buf) { if (!Evoral::midi_event_is_valid(buf, size)) { cerr << "WARNING: Ignoring illegal immediate MIDI event" << endl; return false; } return (_immediate_events.write (0, Evoral::MIDI_EVENT, size, buf) == size); } void MidiTrack::set_parameter_automation_state (Evoral::Parameter param, AutoState state) { switch (param.type()) { case MidiCCAutomation: case MidiPgmChangeAutomation: case MidiPitchBenderAutomation: case MidiChannelPressureAutomation: case MidiNotePressureAutomation: case MidiSystemExclusiveAutomation: /* The track control for MIDI parameters is for immediate events to act as a control surface, write/touch for them is not currently supported. */ return; default: Automatable::set_parameter_automation_state(param, state); } } void MidiTrack::MidiControl::restore_value () { actually_set_value (get_value(), Controllable::NoGroup); } void MidiTrack::MidiControl::actually_set_value (double val, PBD::Controllable::GroupControlDisposition group_override) { const Evoral::Parameter ¶meter = _list ? _list->parameter() : Control::parameter(); const Evoral::ParameterDescriptor &desc = EventTypeMap::instance().descriptor(parameter); bool valid = false; if (isinf_local(val)) { cerr << "MIDIControl value is infinity" << endl; } else if (isnan_local(val)) { cerr << "MIDIControl value is NaN" << endl; } else if (val < desc.lower) { cerr << "MIDIControl value is < " << desc.lower << endl; } else if (val > desc.upper) { cerr << "MIDIControl value is > " << desc.upper << endl; } else { valid = true; } if (!valid) { return; } assert(val <= desc.upper); if ( ! _list || ! automation_playback()) { size_t size = 3; uint8_t ev[3] = { parameter.channel(), uint8_t (val), 0 }; switch(parameter.type()) { case MidiCCAutomation: ev[0] |= MIDI_CMD_CONTROL; ev[1] = parameter.id(); ev[2] = int(val); break; case MidiPgmChangeAutomation: size = 2; ev[0] |= MIDI_CMD_PGM_CHANGE; ev[1] = int(val); break; case MidiChannelPressureAutomation: size = 2; ev[0] |= MIDI_CMD_CHANNEL_PRESSURE; ev[1] = int(val); break; case MidiNotePressureAutomation: ev[0] |= MIDI_CMD_NOTE_PRESSURE; ev[1] = parameter.id(); ev[2] = int(val); break; case MidiPitchBenderAutomation: ev[0] |= MIDI_CMD_BENDER; ev[1] = 0x7F & int(val); ev[2] = 0x7F & (int(val) >> 7); break; default: size = 0; assert(false); } _route->write_immediate_event(size, ev); } AutomationControl::actually_set_value(val, group_override); } void MidiTrack::set_step_editing (bool yn) { if (_session.record_status() != Session::Disabled) { return; } if (yn != _step_editing) { _step_editing = yn; StepEditStatusChange (yn); } } boost::shared_ptr MidiTrack::write_source (uint32_t) { return _disk_writer->midi_write_source (); } void MidiTrack::set_playback_channel_mode(ChannelMode mode, uint16_t mask) { if (_playback_filter.set_channel_mode(mode, mask)) { _session.set_dirty(); } } void MidiTrack::set_capture_channel_mode(ChannelMode mode, uint16_t mask) { if (_capture_filter.set_channel_mode(mode, mask)) { _session.set_dirty(); } } void MidiTrack::set_playback_channel_mask (uint16_t mask) { if (_playback_filter.set_channel_mask(mask)) { _session.set_dirty(); } } void MidiTrack::set_capture_channel_mask (uint16_t mask) { if (_capture_filter.set_channel_mask(mask)) { _session.set_dirty(); } } boost::shared_ptr MidiTrack::midi_playlist () { return boost::dynamic_pointer_cast (_playlists[DataType::MIDI]); } bool MidiTrack::input_active () const { return _input_active; } void MidiTrack::set_input_active (bool yn) { if (yn != _input_active) { _input_active = yn; map_input_active (yn); InputActiveChanged (); /* EMIT SIGNAL */ } } void MidiTrack::map_input_active (bool yn) { if (!_input) { return; } PortSet& ports (_input->ports()); for (PortSet::iterator p = ports.begin(DataType::MIDI); p != ports.end(DataType::MIDI); ++p) { boost::shared_ptr mp = boost::dynamic_pointer_cast (*p); if (yn != mp->input_active()) { mp->set_input_active (yn); } } } void MidiTrack::track_input_active (IOChange change, void* /* src */) { if (change.type & IOChange::ConfigurationChanged) { map_input_active (_input_active); } } boost::shared_ptr MidiTrack::get_gui_feed_buffer () const { return _disk_writer->get_gui_feed_buffer (); } void MidiTrack::act_on_mute () { /* this is called right after our mute status has changed. if we are now muted, send suitable output to shutdown all our notes. XXX we should should also stop all relevant note trackers. */ /* If we haven't got a diskstream yet, there's nothing to worry about, and we can't call get_channel_mask() anyway. */ if (!_disk_writer) { return; } if (muted() || _mute_master->muted_by_others_soloing_at (MuteMaster::AllPoints)) { /* only send messages for channels we are using */ uint16_t mask = _playback_filter.get_channel_mask(); for (uint8_t channel = 0; channel <= 0xF; channel++) { if ((1<resolve_tracker(_immediate_events, Port::port_offset()); } } void MidiTrack::monitoring_changed (bool self, Controllable::GroupControlDisposition gcd) { Track::monitoring_changed (self, gcd); /* monitoring state changed, so flush out any on notes at the * port level. */ PortSet& ports (_output->ports()); for (PortSet::iterator p = ports.begin(); p != ports.end(); ++p) { boost::shared_ptr mp = boost::dynamic_pointer_cast (*p); if (mp) { mp->require_resolve (); } } _disk_reader->reset_tracker (); } MonitorState MidiTrack::monitoring_state () const { MonitorState ms = Track::monitoring_state(); if (ms == MonitoringSilence) { return MonitoringInput; } return ms; } MonitorState MidiTrack::get_auto_monitoring_state () const { //if we are a midi track, we ignore auto_input, tape_mode, etc etc. "Auto" will monitor Disk+In return MonitoringCue; } void MidiTrack::filter_input (BufferSet& bufs) { _capture_filter.filter (bufs); }