/* Copyright (C) 2006 Paul Davis Author: David Robillard This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #ifdef COMPILER_MSVC #include // 'std::isinf()' and 'std::isnan()' are not available in MSVC. #define isinf_local(val) !((bool)_finite((double)val)) #define isnan_local(val) (bool)_isnan((double)val) #else #define isinf_local std::isinf #define isnan_local std::isnan #endif #include "pbd/enumwriter.h" #include "pbd/convert.h" #include "evoral/midi_util.h" #include "ardour/beats_frames_converter.h" #include "ardour/buffer_set.h" #include "ardour/debug.h" #include "ardour/delivery.h" #include "ardour/event_type_map.h" #include "ardour/meter.h" #include "ardour/midi_diskstream.h" #include "ardour/midi_playlist.h" #include "ardour/midi_port.h" #include "ardour/midi_region.h" #include "ardour/midi_track.h" #include "ardour/monitor_control.h" #include "ardour/parameter_types.h" #include "ardour/port.h" #include "ardour/processor.h" #include "ardour/profile.h" #include "ardour/route_group_specialized.h" #include "ardour/session.h" #include "ardour/session_playlists.h" #include "ardour/utils.h" #include "pbd/i18n.h" namespace ARDOUR { class InterThreadInfo; class MidiSource; class Region; class SMFSource; } using namespace std; using namespace ARDOUR; using namespace PBD; MidiTrack::MidiTrack (Session& sess, string name, TrackMode mode) : Track (sess, name, PresentationInfo::MidiTrack, mode, DataType::MIDI) , _immediate_events(1024) // FIXME: size? , _step_edit_ring_buffer(64) // FIXME: size? , _note_mode(Sustained) , _step_editing (false) , _input_active (true) { } MidiTrack::~MidiTrack () { } int MidiTrack::init () { if (Track::init ()) { return -1; } _input->changed.connect_same_thread (*this, boost::bind (&MidiTrack::track_input_active, this, _1, _2)); return 0; } boost::shared_ptr MidiTrack::create_diskstream () { MidiDiskstream::Flag dflags = MidiDiskstream::Flag (MidiDiskstream::Recordable); assert(_mode != Destructive); return boost::shared_ptr (new MidiDiskstream (_session, name(), dflags)); } bool MidiTrack::can_be_record_safe () { if (_step_editing) { return false; } return Track::can_be_record_safe (); } bool MidiTrack::can_be_record_enabled () { if (_step_editing) { return false; } return Track::can_be_record_enabled (); } void MidiTrack::set_diskstream (boost::shared_ptr ds) { /* We have to do this here, as Track::set_diskstream will cause a buffer refill, and the diskstream must be set up to fill its buffers using the correct _note_mode. */ boost::shared_ptr mds = boost::dynamic_pointer_cast (ds); mds->set_note_mode (_note_mode); Track::set_diskstream (ds); mds->reset_tracker (); _diskstream->set_track (this); if (Profile->get_trx()) { _diskstream->set_destructive (false); } else { _diskstream->set_destructive (_mode == Destructive); } _diskstream->set_record_enabled (false); _diskstream_data_recorded_connection.disconnect (); mds->DataRecorded.connect_same_thread ( _diskstream_data_recorded_connection, boost::bind (&MidiTrack::diskstream_data_recorded, this, _1)); DiskstreamChanged (); /* EMIT SIGNAL */ } boost::shared_ptr MidiTrack::midi_diskstream() const { return boost::dynamic_pointer_cast(_diskstream); } int MidiTrack::set_state (const XMLNode& node, int version) { XMLProperty const * prop; /* This must happen before Track::set_state(), as there will be a buffer fill during that call, and we must fill buffers using the correct _note_mode. */ if ((prop = node.property (X_("note-mode"))) != 0) { _note_mode = NoteMode (string_2_enum (prop->value(), _note_mode)); } else { _note_mode = Sustained; } if (Track::set_state (node, version)) { return -1; } // No destructive MIDI tracks (yet?) _mode = Normal; if ((prop = node.property ("input-active")) != 0) { set_input_active (string_is_affirmative (prop->value())); } ChannelMode playback_channel_mode = AllChannels; ChannelMode capture_channel_mode = AllChannels; if ((prop = node.property ("playback-channel-mode")) != 0) { playback_channel_mode = ChannelMode (string_2_enum(prop->value(), playback_channel_mode)); } if ((prop = node.property ("capture-channel-mode")) != 0) { capture_channel_mode = ChannelMode (string_2_enum(prop->value(), capture_channel_mode)); } if ((prop = node.property ("channel-mode")) != 0) { /* 3.0 behaviour where capture and playback modes were not separated */ playback_channel_mode = ChannelMode (string_2_enum(prop->value(), playback_channel_mode)); capture_channel_mode = playback_channel_mode; } unsigned int playback_channel_mask = 0xffff; unsigned int capture_channel_mask = 0xffff; if ((prop = node.property ("playback-channel-mask")) != 0) { sscanf (prop->value().c_str(), "0x%x", &playback_channel_mask); } if ((prop = node.property ("capture-channel-mask")) != 0) { sscanf (prop->value().c_str(), "0x%x", &capture_channel_mask); } if ((prop = node.property ("channel-mask")) != 0) { sscanf (prop->value().c_str(), "0x%x", &playback_channel_mask); capture_channel_mask = playback_channel_mask; } set_playback_channel_mode (playback_channel_mode, playback_channel_mask); set_capture_channel_mode (capture_channel_mode, capture_channel_mask); pending_state = const_cast (&node); if (_session.state_of_the_state() & Session::Loading) { _session.StateReady.connect_same_thread ( *this, boost::bind (&MidiTrack::set_state_part_two, this)); } else { set_state_part_two (); } return 0; } XMLNode& MidiTrack::state(bool full_state) { XMLNode& root (Track::state(full_state)); XMLNode* freeze_node; char buf[64]; if (_freeze_record.playlist) { XMLNode* inode; freeze_node = new XMLNode (X_("freeze-info")); freeze_node->add_property ("playlist", _freeze_record.playlist->name()); freeze_node->add_property ("state", enum_2_string (_freeze_record.state)); for (vector::iterator i = _freeze_record.processor_info.begin(); i != _freeze_record.processor_info.end(); ++i) { inode = new XMLNode (X_("processor")); (*i)->id.print (buf, sizeof(buf)); inode->add_property (X_("id"), buf); inode->add_child_copy ((*i)->state); freeze_node->add_child_nocopy (*inode); } root.add_child_nocopy (*freeze_node); } root.add_property("playback_channel-mode", enum_2_string(get_playback_channel_mode())); root.add_property("capture_channel-mode", enum_2_string(get_capture_channel_mode())); snprintf (buf, sizeof(buf), "0x%x", get_playback_channel_mask()); root.add_property("playback-channel-mask", buf); snprintf (buf, sizeof(buf), "0x%x", get_capture_channel_mask()); root.add_property("capture-channel-mask", buf); root.add_property ("note-mode", enum_2_string (_note_mode)); root.add_property ("step-editing", (_step_editing ? "yes" : "no")); root.add_property ("input-active", (_input_active ? "yes" : "no")); return root; } void MidiTrack::set_state_part_two () { XMLNode* fnode; XMLProperty const * prop; LocaleGuard lg; /* This is called after all session state has been restored but before have been made ports and connections are established. */ if (pending_state == 0) { return; } if ((fnode = find_named_node (*pending_state, X_("freeze-info"))) != 0) { _freeze_record.state = Frozen; for (vector::iterator i = _freeze_record.processor_info.begin(); i != _freeze_record.processor_info.end(); ++i) { delete *i; } _freeze_record.processor_info.clear (); if ((prop = fnode->property (X_("playlist"))) != 0) { boost::shared_ptr pl = _session.playlists->by_name (prop->value()); if (pl) { _freeze_record.playlist = boost::dynamic_pointer_cast (pl); } else { _freeze_record.playlist.reset(); _freeze_record.state = NoFreeze; return; } } if ((prop = fnode->property (X_("state"))) != 0) { _freeze_record.state = FreezeState (string_2_enum (prop->value(), _freeze_record.state)); } XMLNodeConstIterator citer; XMLNodeList clist = fnode->children(); for (citer = clist.begin(); citer != clist.end(); ++citer) { if ((*citer)->name() != X_("processor")) { continue; } if ((prop = (*citer)->property (X_("id"))) == 0) { continue; } FreezeRecordProcessorInfo* frii = new FreezeRecordProcessorInfo (*((*citer)->children().front()), boost::shared_ptr()); frii->id = prop->value (); _freeze_record.processor_info.push_back (frii); } } if (midi_diskstream ()) { midi_diskstream()->set_block_size (_session.get_block_size ()); } return; } void MidiTrack::update_controls(const BufferSet& bufs) { const MidiBuffer& buf = bufs.get_midi(0); for (MidiBuffer::const_iterator e = buf.begin(); e != buf.end(); ++e) { const Evoral::Event& ev = *e; const Evoral::Parameter param = midi_parameter(ev.buffer(), ev.size()); const boost::shared_ptr control = this->control(param); if (control) { control->set_double(ev.value(), _session.transport_frame(), false); } } } /** @param need_butler to be set to true if this track now needs the butler, otherwise it can be left alone * or set to false. */ int MidiTrack::roll (pframes_t nframes, framepos_t start_frame, framepos_t end_frame, int declick, bool& need_butler) { Glib::Threads::RWLock::ReaderLock lm (_processor_lock, Glib::Threads::TRY_LOCK); if (!lm.locked()) { boost::shared_ptr diskstream = midi_diskstream(); framecnt_t playback_distance = diskstream->calculate_playback_distance(nframes); if (can_internal_playback_seek(::llabs(playback_distance))) { /* TODO should declick, and/or note-off */ internal_playback_seek(playback_distance); } return 0; } boost::shared_ptr diskstream = midi_diskstream(); if (n_outputs().n_total() == 0 && _processors.empty()) { return 0; } if (!_active) { silence (nframes); if (_meter_point == MeterInput && ((_monitoring_control->monitoring_choice() & MonitorInput) || _diskstream->record_enabled())) { _meter->reset(); } return 0; } framepos_t transport_frame = _session.transport_frame(); int dret; framecnt_t playback_distance; if ((nframes = check_initial_delay (nframes, transport_frame)) == 0) { /* need to do this so that the diskstream sets its playback distance to zero, thus causing diskstream::commit to do nothing. */ BufferSet bufs; /* empty set - is OK, since nothing will happen */ dret = diskstream->process (bufs, transport_frame, 0, playback_distance, false); need_butler = diskstream->commit (playback_distance); return dret; } BufferSet& bufs = _session.get_route_buffers (n_process_buffers()); fill_buffers_with_input (bufs, _input, nframes); /* filter captured data before meter sees it */ _capture_filter.filter (bufs); if (_meter_point == MeterInput && ((_monitoring_control->monitoring_choice() & MonitorInput) || _diskstream->record_enabled())) { _meter->run (bufs, start_frame, end_frame, 1.0 /*speed()*/, nframes, true); } _silent = false; if ((dret = diskstream->process (bufs, transport_frame, nframes, playback_distance, (monitoring_state() == MonitoringDisk))) != 0) { need_butler = diskstream->commit (playback_distance); silence (nframes); return dret; } /* note diskstream uses our filter to filter/map playback channels appropriately. */ if (monitoring_state() == MonitoringInput) { /* not actually recording, but we want to hear the input material anyway, at least potentially (depending on monitoring options) */ /* because the playback buffer is event based and not a * continuous stream, we need to make sure that we empty * it of events every cycle to avoid it filling up with events * read from disk, while we are actually monitoring input */ diskstream->flush_playback (start_frame, end_frame); } /* append immediate messages to the first MIDI buffer (thus sending it to the first output port) */ write_out_of_band_data (bufs, start_frame, end_frame, nframes); /* final argument: don't waste time with automation if we're not recording or rolling */ process_output_buffers (bufs, start_frame, end_frame, nframes, declick, (!diskstream->record_enabled() && !_session.transport_stopped())); flush_processor_buffers_locked (nframes); need_butler = diskstream->commit (playback_distance); return 0; } int MidiTrack::no_roll (pframes_t nframes, framepos_t start_frame, framepos_t end_frame, bool state_changing) { int ret = Track::no_roll (nframes, start_frame, end_frame, state_changing); if (ret == 0 && _step_editing) { push_midi_input_to_step_edit_ringbuffer (nframes); } return ret; } void MidiTrack::realtime_locate () { Glib::Threads::RWLock::ReaderLock lm (_processor_lock, Glib::Threads::TRY_LOCK); if (!lm.locked ()) { return; } for (ProcessorList::iterator i = _processors.begin(); i != _processors.end(); ++i) { (*i)->realtime_locate (); } midi_diskstream()->reset_tracker (); } void MidiTrack::realtime_handle_transport_stopped () { Glib::Threads::RWLock::ReaderLock lm (_processor_lock, Glib::Threads::TRY_LOCK); if (!lm.locked ()) { return; } for (ProcessorList::iterator i = _processors.begin(); i != _processors.end(); ++i) { (*i)->realtime_handle_transport_stopped (); } } void MidiTrack::non_realtime_locate (framepos_t pos) { Track::non_realtime_locate(pos); boost::shared_ptr playlist = midi_diskstream()->midi_playlist(); if (!playlist) { return; } /* Get the top unmuted region at this position. */ boost::shared_ptr region = boost::dynamic_pointer_cast( playlist->top_unmuted_region_at(pos)); if (!region) { return; } /* the source may be missing, but the control still referenced in the GUI */ if (!region->midi_source() || !region->model()) { return; } Glib::Threads::Mutex::Lock lm (_control_lock, Glib::Threads::TRY_LOCK); if (!lm.locked()) { return; } /* Update track controllers based on its "automation". */ const framepos_t origin = region->position() - region->start(); BeatsFramesConverter bfc(_session.tempo_map(), origin); for (Controls::const_iterator c = _controls.begin(); c != _controls.end(); ++c) { boost::shared_ptr tcontrol; boost::shared_ptr rcontrol; if ((tcontrol = boost::dynamic_pointer_cast(c->second)) && (rcontrol = region->control(tcontrol->parameter()))) { const Evoral::Beats pos_beats = bfc.from(pos - origin); if (rcontrol->list()->size() > 0) { tcontrol->set_value(rcontrol->list()->eval(pos_beats.to_double()), Controllable::NoGroup); } } } } void MidiTrack::push_midi_input_to_step_edit_ringbuffer (framecnt_t nframes) { PortSet& ports (_input->ports()); for (PortSet::iterator p = ports.begin(DataType::MIDI); p != ports.end(DataType::MIDI); ++p) { Buffer& b (p->get_buffer (nframes)); const MidiBuffer* const mb = dynamic_cast(&b); assert (mb); for (MidiBuffer::const_iterator e = mb->begin(); e != mb->end(); ++e) { const Evoral::Event ev(*e, false); /* note on, since for step edit, note length is determined elsewhere */ if (ev.is_note_on()) { /* we don't care about the time for this purpose */ _step_edit_ring_buffer.write (0, ev.event_type(), ev.size(), ev.buffer()); } } } } void MidiTrack::write_out_of_band_data (BufferSet& bufs, framepos_t /*start*/, framepos_t /*end*/, framecnt_t nframes) { MidiBuffer& buf (bufs.get_midi (0)); update_controls (bufs); // Append immediate events if (_immediate_events.read_space()) { DEBUG_TRACE (DEBUG::MidiIO, string_compose ("%1 has %2 of immediate events to deliver\n", name(), _immediate_events.read_space())); /* write as many of the immediate events as we can, but give "true" as * the last argument ("stop on overflow in destination") so that we'll * ship the rest out next time. * * the Port::port_offset() + (nframes-1) argument puts all these events at the last * possible position of the output buffer, so that we do not * violate monotonicity when writing. Port::port_offset() will * be non-zero if we're in a split process cycle. */ _immediate_events.read (buf, 0, 1, Port::port_offset() + nframes - 1, true); } } int MidiTrack::export_stuff (BufferSet& buffers, framepos_t start, framecnt_t nframes, boost::shared_ptr endpoint, bool include_endpoint, bool for_export, bool for_freeze) { if (buffers.count().n_midi() == 0) { return -1; } boost::shared_ptr diskstream = midi_diskstream(); Glib::Threads::RWLock::ReaderLock rlock (_processor_lock); boost::shared_ptr mpl = boost::dynamic_pointer_cast(diskstream->playlist()); if (!mpl) { return -2; } buffers.get_midi(0).clear(); if (mpl->read(buffers.get_midi(0), start, nframes, 0) != nframes) { return -1; } //bounce_process (buffers, start, nframes, endpoint, include_endpoint, for_export, for_freeze); return 0; } boost::shared_ptr MidiTrack::bounce (InterThreadInfo& itt) { return bounce_range (_session.current_start_frame(), _session.current_end_frame(), itt, main_outs(), false); } boost::shared_ptr MidiTrack::bounce_range (framepos_t start, framepos_t end, InterThreadInfo& itt, boost::shared_ptr endpoint, bool include_endpoint) { vector > srcs; return _session.write_one_track (*this, start, end, false, srcs, itt, endpoint, include_endpoint, false, false); } void MidiTrack::freeze_me (InterThreadInfo& /*itt*/) { std::cerr << "MIDI freeze currently unsupported" << std::endl; } void MidiTrack::unfreeze () { _freeze_record.state = UnFrozen; FreezeChange (); /* EMIT SIGNAL */ } void MidiTrack::set_note_mode (NoteMode m) { _note_mode = m; midi_diskstream()->set_note_mode(m); } std::string MidiTrack::describe_parameter (Evoral::Parameter param) { const std::string str(instrument_info().get_controller_name(param)); return str.empty() ? Automatable::describe_parameter(param) : str; } void MidiTrack::midi_panic() { DEBUG_TRACE (DEBUG::MidiIO, string_compose ("%1 delivers panic data\n", name())); for (uint8_t channel = 0; channel <= 0xF; channel++) { uint8_t ev[3] = { ((uint8_t) (MIDI_CMD_CONTROL | channel)), ((uint8_t) MIDI_CTL_SUSTAIN), 0 }; write_immediate_event(3, ev); ev[1] = MIDI_CTL_ALL_NOTES_OFF; write_immediate_event(3, ev); ev[1] = MIDI_CTL_RESET_CONTROLLERS; write_immediate_event(3, ev); } } /** \return true on success, false on failure (no buffer space left) */ bool MidiTrack::write_immediate_event(size_t size, const uint8_t* buf) { if (!Evoral::midi_event_is_valid(buf, size)) { cerr << "WARNING: Ignoring illegal immediate MIDI event" << endl; return false; } return (_immediate_events.write (0, Evoral::MIDI_EVENT, size, buf) == size); } void MidiTrack::set_parameter_automation_state (Evoral::Parameter param, AutoState state) { switch (param.type()) { case MidiCCAutomation: case MidiPgmChangeAutomation: case MidiPitchBenderAutomation: case MidiChannelPressureAutomation: case MidiNotePressureAutomation: case MidiSystemExclusiveAutomation: /* The track control for MIDI parameters is for immediate events to act as a control surface, write/touch for them is not currently supported. */ return; default: Automatable::set_parameter_automation_state(param, state); } } void MidiTrack::MidiControl::actually_set_value (double val, PBD::Controllable::GroupControlDisposition group_override) { const Evoral::Parameter ¶meter = _list ? _list->parameter() : Control::parameter(); const Evoral::ParameterDescriptor &desc = EventTypeMap::instance().descriptor(parameter); bool valid = false; if (isinf_local(val)) { cerr << "MIDIControl value is infinity" << endl; } else if (isnan_local(val)) { cerr << "MIDIControl value is NaN" << endl; } else if (val < desc.lower) { cerr << "MIDIControl value is < " << desc.lower << endl; } else if (val > desc.upper) { cerr << "MIDIControl value is > " << desc.upper << endl; } else { valid = true; } if (!valid) { return; } assert(val <= desc.upper); if ( ! _list || ! automation_playback()) { size_t size = 3; uint8_t ev[3] = { parameter.channel(), uint8_t (val), 0 }; switch(parameter.type()) { case MidiCCAutomation: ev[0] += MIDI_CMD_CONTROL; ev[1] = parameter.id(); ev[2] = int(val); break; case MidiPgmChangeAutomation: size = 2; ev[0] += MIDI_CMD_PGM_CHANGE; ev[1] = int(val); break; case MidiChannelPressureAutomation: size = 2; ev[0] += MIDI_CMD_CHANNEL_PRESSURE; ev[1] = int(val); break; case MidiNotePressureAutomation: ev[0] += MIDI_CMD_NOTE_PRESSURE; ev[1] = parameter.id(); ev[2] = int(val); break; case MidiPitchBenderAutomation: ev[0] += MIDI_CMD_BENDER; ev[1] = 0x7F & int(val); ev[2] = 0x7F & (int(val) >> 7); break; default: assert(false); } _route->write_immediate_event(size, ev); } AutomationControl::actually_set_value(val, group_override); } void MidiTrack::set_step_editing (bool yn) { if (_session.record_status() != Session::Disabled) { return; } if (yn != _step_editing) { _step_editing = yn; StepEditStatusChange (yn); } } boost::shared_ptr MidiTrack::write_source (uint32_t) { return midi_diskstream()->write_source (); } void MidiTrack::set_playback_channel_mode(ChannelMode mode, uint16_t mask) { if (_playback_filter.set_channel_mode(mode, mask)) { _session.set_dirty(); } } void MidiTrack::set_capture_channel_mode(ChannelMode mode, uint16_t mask) { if (_capture_filter.set_channel_mode(mode, mask)) { _session.set_dirty(); } } void MidiTrack::set_playback_channel_mask (uint16_t mask) { if (_playback_filter.set_channel_mask(mask)) { _session.set_dirty(); } } void MidiTrack::set_capture_channel_mask (uint16_t mask) { if (_capture_filter.set_channel_mask(mask)) { _session.set_dirty(); } } boost::shared_ptr MidiTrack::midi_playlist () { return midi_diskstream()->midi_playlist (); } void MidiTrack::diskstream_data_recorded (boost::weak_ptr src) { DataRecorded (src); /* EMIT SIGNAL */ } bool MidiTrack::input_active () const { return _input_active; } void MidiTrack::set_input_active (bool yn) { if (yn != _input_active) { _input_active = yn; map_input_active (yn); InputActiveChanged (); /* EMIT SIGNAL */ } } void MidiTrack::map_input_active (bool yn) { if (!_input) { return; } PortSet& ports (_input->ports()); for (PortSet::iterator p = ports.begin(DataType::MIDI); p != ports.end(DataType::MIDI); ++p) { boost::shared_ptr mp = boost::dynamic_pointer_cast (*p); if (yn != mp->input_active()) { mp->set_input_active (yn); } } } void MidiTrack::track_input_active (IOChange change, void* /* src */) { if (change.type & IOChange::ConfigurationChanged) { map_input_active (_input_active); } } boost::shared_ptr MidiTrack::diskstream_factory (XMLNode const & node) { return boost::shared_ptr (new MidiDiskstream (_session, node)); } boost::shared_ptr MidiTrack::get_gui_feed_buffer () const { return midi_diskstream()->get_gui_feed_buffer (); } void MidiTrack::act_on_mute () { /* this is called right after our mute status has changed. if we are now muted, send suitable output to shutdown all our notes. XXX we should should also stop all relevant note trackers. */ /* If we haven't got a diskstream yet, there's nothing to worry about, and we can't call get_channel_mask() anyway. */ if (!midi_diskstream()) { return; } if (muted() || _mute_master->muted_by_others_soloing_at (MuteMaster::AllPoints)) { /* only send messages for channels we are using */ uint16_t mask = _playback_filter.get_channel_mask(); for (uint8_t channel = 0; channel <= 0xF; channel++) { if ((1<resolve_tracker(_immediate_events, Port::port_offset()); } } void MidiTrack::monitoring_changed (bool self, Controllable::GroupControlDisposition gcd) { Track::monitoring_changed (self, gcd); /* monitoring state changed, so flush out any on notes at the * port level. */ PortSet& ports (_output->ports()); for (PortSet::iterator p = ports.begin(); p != ports.end(); ++p) { boost::shared_ptr mp = boost::dynamic_pointer_cast (*p); if (mp) { mp->require_resolve (); } } boost::shared_ptr md (midi_diskstream()); if (md) { md->reset_tracker (); } } MonitorState MidiTrack::monitoring_state () const { MonitorState ms = Track::monitoring_state(); if (ms == MonitoringSilence) { return MonitoringInput; } return ms; }