/* Copyright (C) 2007 Paul Davis Written by Dave Robillard, 2007 This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #define __STDC_LIMIT_MACROS 1 #include #include #include #include #include #include #include #include #include #include using namespace std; using namespace ARDOUR; // Read iterator (const_iterator) MidiModel::const_iterator::const_iterator(const MidiModel& model, double t) : _model(&model) , _is_end( (t == DBL_MAX) || model.empty()) , _locked( ! _is_end) { //cerr << "Created MIDI iterator @ " << t << "(is end: " << _is_end << ")" << endl; if (_is_end) return; model.read_lock(); _note_iter = model.notes().end(); for (MidiModel::Notes::const_iterator i = model.notes().begin(); i != model.notes().end(); ++i) { if ((*i).time() >= t) { _note_iter = i; break; } } MidiControlIterator earliest_control = make_pair(boost::shared_ptr(), make_pair(DBL_MAX, 0.0)); _control_iters.reserve(model.controls().size()); for (Automatable::Controls::const_iterator i = model.controls().begin(); i != model.controls().end(); ++i) { assert(i->first.type() == MidiCCAutomation); double x, y; bool ret = i->second->list()->rt_safe_earliest_event_unlocked(t, DBL_MAX, x, y); if (!ret) { cerr << "MIDI Iterator: CC " << i->first.id() << " (size " << i->second->list()->size() << ") has no events past " << t << endl; continue; } assert(x >= 0); assert(y >= 0); assert(y <= UINT8_MAX); const MidiControlIterator new_iter = make_pair(i->second->list(), make_pair(x, y)); //cerr << "MIDI Iterator: CC " << i->first.id() << " added (" << x << ", " << y << ")" << endl; _control_iters.push_back(new_iter); if (x < earliest_control.second.first) { earliest_control = new_iter; _control_iter = _control_iters.end(); --_control_iter; } } if (_note_iter != model.notes().end()) { _event = MidiEvent(_note_iter->on_event(), false); ++_note_iter; } if (earliest_control.first && earliest_control.second.first < _event.time()) model.control_to_midi_event(_event, earliest_control); else _control_iter = _control_iters.end(); if (_event.size() == 0) { //cerr << "Created MIDI iterator @ " << t << " is at end." << endl; _is_end = true; _model->read_unlock(); _locked = false; //} else { // printf("MIDI Iterator = %X @ %lf\n", _event.type(), _event.time()); } } MidiModel::const_iterator::~const_iterator() { if (_locked) _model->read_unlock(); } const MidiModel::const_iterator& MidiModel::const_iterator::operator++() { if (_is_end) throw std::logic_error("Attempt to iterate past end of MidiModel"); assert(_event.is_note() || _event.is_cc()); // Increment past current control event if (_control_iter->first && _event.is_cc()) { double x, y; const bool ret = _control_iter->first->rt_safe_earliest_event_unlocked( _control_iter->second.first, DBL_MAX, x, y, false); if (ret) { //cerr << "Incremented " << _control_iter->first->parameter().id() << " to " << x << endl; _control_iter->second.first = x; _control_iter->second.second = y; } else { //cerr << "Hit end of " << _control_iter->first->parameter().id() << endl; _control_iter->first.reset(); _control_iter->second.first = DBL_MAX; } } // Now find and point at the earliest event _control_iter = _control_iters.begin(); for (std::vector::iterator i = _control_iters.begin(); i != _control_iters.end(); ++i) { if (i->second.first < _control_iter->second.first) { _control_iter = i; } } enum Type { NIL, NOTE, CC }; Type type = NIL; if (_note_iter != _model->notes().end()) type = NOTE; if (_control_iter != _control_iters.end() && _control_iter->second.first != DBL_MAX) if (_note_iter == _model->notes().end() || _control_iter->second.first < _note_iter->time()) type = CC; if (type == NOTE) { //cerr << "MIDI Iterator = note" << endl; _event = MidiEvent(_note_iter->on_event(), false); ++_note_iter; } else if (type == CC) { //cerr << "MIDI Iterator = CC" << endl; _model->control_to_midi_event(_event, *_control_iter); } else { //cerr << "MIDI Iterator = NIL" << endl; _is_end = true; _model->read_unlock(); _locked = false; } return *this; } bool MidiModel::const_iterator::operator==(const const_iterator& other) const { if (_is_end) if (other._is_end) return true; else return false; else return (_event == other._event); } // MidiModel MidiModel::MidiModel(Session& s, size_t size) : Automatable(s, "midi model") , _notes(size) , _note_mode(Sustained) , _writing(false) , _edited(false) //, _active_notes(LaterNoteEndComparator()) , _end_iter(*this, DBL_MAX) , _next_read(UINT32_MAX) , _read_iter(*this, DBL_MAX) { } /** Read events in frame range \a start .. \a start+cnt into \a dst, * adding \a stamp_offset to each event's timestamp. * \return number of events written to \a dst */ size_t MidiModel::read(MidiRingBuffer& dst, nframes_t start, nframes_t nframes, nframes_t stamp_offset) const { size_t read_events = 0; if (start != _next_read) { _read_iter = const_iterator(*this, (double)start); // cerr << "Repositioning iterator from " << _next_read << " to " << start << endl; //} else { // cerr << "Using cached iterator at " << _next_read << endl; } _next_read = start + nframes; while (_read_iter != end() && _read_iter->time() < start + nframes) { dst.write(_read_iter->time() + stamp_offset, _read_iter->size(), _read_iter->buffer()); ++_read_iter; ++read_events; } #if 0 /* FIXME: cache last lookup value to avoid O(n) search every time */ if (_note_mode == Sustained) { for (Notes::const_iterator n = _notes.begin(); n != _notes.end(); ++n) { while ( ! _active_notes.empty() ) { const Note* const earliest_off = _active_notes.top(); const MidiEvent& off_ev = earliest_off->off_event(); if (off_ev.time() < start + nframes && off_ev.time() <= n->time()) { dst.write(off_ev.time() + stamp_offset, off_ev.size(), off_ev.buffer()); _active_notes.pop(); ++read_events; } else { break; } } if (n->time() >= start + nframes) break; // Note on if (n->time() >= start) { const MidiEvent& on_ev = n->on_event(); dst.write(on_ev.time() + stamp_offset, on_ev.size(), on_ev.buffer()); _active_notes.push(&(*n)); ++read_events; } } // Write any trailing note offs while ( ! _active_notes.empty() ) { const Note* const earliest_off = _active_notes.top(); const MidiEvent& off_ev = earliest_off->off_event(); if (off_ev.time() < start + nframes) { dst.write(off_ev.time() + stamp_offset, off_ev.size(), off_ev.buffer()); _active_notes.pop(); ++read_events; } else { break; } } // Percussive } else { for (Notes::const_iterator n = _notes.begin(); n != _notes.end(); ++n) { // Note on if (n->time() >= start) { if (n->time() < start + nframes) { const MidiEvent& ev = n->on_event(); dst.write(ev.time() + stamp_offset, ev.size(), ev.buffer()); ++read_events; } else { break; } } } } #endif return read_events; } bool MidiModel::control_to_midi_event(MidiEvent& ev, const MidiControlIterator& iter) const { if (iter.first->parameter().type() == MidiCCAutomation) { if (ev.size() < 3) ev.set_buffer((Byte*)malloc(3), true); assert(iter.first); assert(iter.first->parameter().id() <= INT8_MAX); assert(iter.second.second <= INT8_MAX); ev.buffer()[0] = MIDI_CMD_CONTROL; ev.buffer()[1] = (Byte)iter.first->parameter().id(); ev.buffer()[2] = (Byte)iter.second.second; ev.time() = iter.second.first; // x ev.size() = 3; return true; } else { return false; } } /** Return the earliest MIDI event in the given range. * * \return true if \a output has been set to the earliest event in the given range. */ #if 0 bool MidiModel::earliest_note_event(MidiEvent& output, nframes_t start, nframes_t nframes) const { /* FIXME: cache last lookup value to avoid O(n) search every time */ const Note* const earliest_on = NULL; const Note* const earliest_off = NULL; const MidiEvent* const earliest_cc = NULL; /* Notes */ if (_note_mode == Sustained) { for (Notes::const_iterator n = _notes.begin(); n != _notes.end(); ++n) { if ( ! _active_notes.empty() ) { const Note* const earliest_off = _active_notes.top(); const MidiEvent& off_ev = earliest_off->off_event(); if (off_ev.time() < start + nframes && off_ev.time() <= n->time()) { output = off_ev; //dst.write(off_ev.time() + stamp_offset, off_ev.size(), off_ev.buffer()); _active_notes.pop(); return true; } } if (n->time() >= start + nframes) break; // Note on if (n->time() >= start) { earliest_on = &n->on_event(); //dst.write(on_ev.time() + stamp_offset, on_ev.size(), on_ev.buffer()); _active_notes.push(&(*n)); return true; } } // Write any trailing note offs while ( ! _active_notes.empty() ) { const Note* const earliest_off = _active_notes.top(); const MidiEvent& off_ev = earliest_off->off_event(); if (off_ev.time() < start + nframes) { dst.write(off_ev.time() + stamp_offset, off_ev.size(), off_ev.buffer()); _active_notes.pop(); ++read_events; } else { break; } } // Percussive } else { for (Notes::const_iterator n = _notes.begin(); n != _notes.end(); ++n) { // Note on if (n->time() >= start) { if (n->time() < start + nframes) { const MidiEvent& ev = n->on_event(); dst.write(ev.time() + stamp_offset, ev.size(), ev.buffer()); ++read_events; } else { break; } } } } return read_events; } #endif /** Begin a write of events to the model. * * If \a mode is Sustained, complete notes with duration are constructed as note * on/off events are received. Otherwise (Percussive), only note on events are * stored; note off events are discarded entirely and all contained notes will * have duration 0. */ void MidiModel::start_write() { //cerr << "MM " << this << " START WRITE, MODE = " << enum_2_string(_note_mode) << endl; write_lock(); _writing = true; _write_notes.clear(); write_unlock(); } /** Finish a write of events to the model. * * If \a delete_stuck is true and the current mode is Sustained, note on events * that were never resolved with a corresonding note off will be deleted. * Otherwise they will remain as notes with duration 0. */ void MidiModel::end_write(bool delete_stuck) { write_lock(); assert(_writing); //cerr << "MM " << this << " END WRITE: " << _notes.size() << " NOTES\n"; if (_note_mode == Sustained && delete_stuck) { for (Notes::iterator n = _notes.begin(); n != _notes.end() ; ) { if (n->duration() == 0) { cerr << "WARNING: Stuck note lost: " << n->note() << endl; n = _notes.erase(n); } else { ++n; } } } _write_notes.clear(); _writing = false; write_unlock(); } /** Append contents of \a buf to model. NOT realtime safe. * * Timestamps of events in \a buf are expected to be relative to * the start of this model (t=0) and MUST be monotonically increasing * and MUST be >= the latest event currently in the model. * * Events in buf are deep copied. */ void MidiModel::append(const MidiBuffer& buf) { write_lock(); assert(_writing); for (MidiBuffer::const_iterator i = buf.begin(); i != buf.end(); ++i) { assert(_notes.empty() || (*i).time() >= _notes.back().time()); append(*i); } write_unlock(); } /** Append \a in_event to model. NOT realtime safe. * * Timestamps of events in \a buf are expected to be relative to * the start of this model (t=0) and MUST be monotonically increasing * and MUST be >= the latest event currently in the model. */ void MidiModel::append(const MidiEvent& ev) { write_lock(); assert(_notes.empty() || ev.time() >= _notes.back().time()); assert(_writing); if (ev.is_note_on()) append_note_on_unlocked(ev.time(), ev.note(), ev.velocity()); else if (ev.is_note_off()) append_note_off_unlocked(ev.time(), ev.note()); else if (ev.is_cc()) append_cc_unlocked(ev.time(), ev.cc_number(), ev.cc_value()); else printf("MM Unknown event type %X\n", ev.type()); write_unlock(); } void MidiModel::append_note_on_unlocked(double time, uint8_t note_num, uint8_t velocity) { //cerr << "MidiModel " << this << " note " << (int)note_num << " on @ " << time << endl; assert(_writing); _notes.push_back(Note(time, 0, note_num, velocity)); if (_note_mode == Sustained) { //cerr << "MM Sustained: Appending active note on " << (unsigned)(uint8_t)note_num << endl; _write_notes.push_back(_notes.size() - 1); } else { //cerr << "MM Percussive: NOT appending active note on" << endl; } } void MidiModel::append_note_off_unlocked(double time, uint8_t note_num) { //cerr << "MidiModel " << this << " note " << (int)note_num << " off @ " << time << endl; assert(_writing); if (_note_mode == Percussive) { //cerr << "MM Ignoring note off (percussive mode)" << endl; return; } else { //cerr << "MM Attempting to resolve note off " << (unsigned)(uint8_t)note_num << endl; } /* FIXME: make _write_notes fixed size (127 noted) for speed */ /* FIXME: note off velocity for that one guy out there who actually has * keys that send it */ for (WriteNotes::iterator n = _write_notes.begin(); n != _write_notes.end(); ++n) { Note& note = _notes[*n]; //cerr << (unsigned)(uint8_t)note.note() << " ? " << (unsigned)note_num << endl; if (note.note() == note_num) { assert(time > note.time()); note.set_duration(time - note.time()); _write_notes.erase(n); //cerr << "MM resolved note, duration: " << note.duration() << endl; break; } } } void MidiModel::append_cc_unlocked(double time, uint8_t number, uint8_t value) { Parameter param(MidiCCAutomation, number); boost::shared_ptr control = Automatable::control(param, true); //cerr << "MidiModel " << this << "(" << control.get() << ") add CC " << (int)number << " = " << (int)value // << " @ " << time << endl; control->list()->fast_simple_add(time, (double)value); } void MidiModel::add_note_unlocked(const Note& note) { //cerr << "MidiModel " << this << " add note " << (int)note.note() << " @ " << note.time() << endl; Notes::iterator i = upper_bound(_notes.begin(), _notes.end(), note, note_time_comparator); _notes.insert(i, note); } void MidiModel::remove_note_unlocked(const Note& note) { //cerr << "MidiModel " << this << " remove note " << (int)note.note() << " @ " << note.time() << endl; Notes::iterator n = find(_notes.begin(), _notes.end(), note); if (n != _notes.end()) _notes.erase(n); } /** Slow! for debugging only. */ #ifndef NDEBUG bool MidiModel::is_sorted() const { bool t = 0; for (Notes::const_iterator n = _notes.begin(); n != _notes.end(); ++n) if (n->time() < t) return false; else t = n->time(); return true; } #endif /** Start a new command. * * This has no side-effects on the model or Session, the returned command * can be held on to for as long as the caller wishes, or discarded without * formality, until apply_command is called and ownership is taken. */ MidiModel::DeltaCommand* MidiModel::new_delta_command(const string name) { DeltaCommand* cmd = new DeltaCommand(*this, name); return cmd; } /** Apply a command. * * Ownership of cmd is taken, it must not be deleted by the caller. * The command will constitute one item on the undo stack. */ void MidiModel::apply_command(Command* cmd) { _session.begin_reversible_command(cmd->name()); (*cmd)(); assert(is_sorted()); _session.commit_reversible_command(cmd); _edited = true; } // MidiEditCommand void MidiModel::DeltaCommand::add(const Note& note) { //cerr << "MEC: apply" << endl; _removed_notes.remove(note); _added_notes.push_back(note); } void MidiModel::DeltaCommand::remove(const Note& note) { //cerr << "MEC: remove" << endl; _added_notes.remove(note); _removed_notes.push_back(note); } void MidiModel::DeltaCommand::operator()() { // This could be made much faster by using a priority_queue for added and // removed notes (or sort here), and doing a single iteration over _model _model.write_lock(); for (std::list::iterator i = _added_notes.begin(); i != _added_notes.end(); ++i) _model.add_note_unlocked(*i); for (std::list::iterator i = _removed_notes.begin(); i != _removed_notes.end(); ++i) _model.remove_note_unlocked(*i); _model.write_unlock(); _model.ContentsChanged(); /* EMIT SIGNAL */ } void MidiModel::DeltaCommand::undo() { // This could be made much faster by using a priority_queue for added and // removed notes (or sort here), and doing a single iteration over _model _model.write_lock(); for (std::list::iterator i = _added_notes.begin(); i != _added_notes.end(); ++i) _model.remove_note_unlocked(*i); for (std::list::iterator i = _removed_notes.begin(); i != _removed_notes.end(); ++i) _model.add_note_unlocked(*i); _model.write_unlock(); _model.ContentsChanged(); /* EMIT SIGNAL */ } bool MidiModel::write_to(boost::shared_ptr source) { //cerr << "Writing model to " << source->name() << endl; /* This could be done using a temporary MidiRingBuffer and using * MidiModel::read and MidiSource::write, but this is more efficient * and doesn't require any buffer size assumptions (ie it's worth * the code duplication). * * This is also different from read in that note off events are written * regardless of the track mode. This is so the user can switch a * recorded track (with note durations from some instrument) to percussive, * save, reload, then switch it back to sustained preserving the original * note durations. */ /* Percussive for (Notes::const_iterator n = _notes.begin(); n != _notes.end(); ++n) { const MidiEvent& ev = n->on_event(); source->append_event_unlocked(ev); }*/ read_lock(); LaterNoteEndComparator cmp; ActiveNotes active_notes(cmp); // Foreach note for (Notes::const_iterator n = _notes.begin(); n != _notes.end(); ++n) { // Write any pending note offs earlier than this note on while ( ! active_notes.empty() ) { const Note* const earliest_off = active_notes.top(); const MidiEvent& off_ev = earliest_off->off_event(); if (off_ev.time() <= n->time()) { source->append_event_unlocked(off_ev); active_notes.pop(); } else { break; } } // Write this note on source->append_event_unlocked(n->on_event()); if (n->duration() > 0) active_notes.push(&(*n)); } // Write any trailing note offs while ( ! active_notes.empty() ) { source->append_event_unlocked(active_notes.top()->off_event()); active_notes.pop(); } _edited = false; read_unlock(); return true; } XMLNode& MidiModel::get_state() { XMLNode *node = new XMLNode("MidiModel"); return *node; }