/* * Copyright (C) 2006-2016 David Robillard * Copyright (C) 2007-2017 Paul Davis * Copyright (C) 2009-2011 Carl Hetherington * Copyright (C) 2013-2020 Robin Gareus * Copyright (C) 2015-2016 Len Ovens * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include #include #include #include "pbd/compose.h" #include "ardour/audio_buffer.h" #include "ardour/buffer_set.h" #include "ardour/dB.h" #include "ardour/meter.h" #include "ardour/midi_buffer.h" #include "ardour/rc_configuration.h" #include "ardour/runtime_functions.h" #include "ardour/session.h" #include "pbd/i18n.h" using namespace std; using namespace ARDOUR; PeakMeter::PeakMeter (Session& s, const std::string& name) : Processor (s, string_compose ("meter-%1", name)) { Kmeterdsp::init (s.nominal_sample_rate ()); Iec1ppmdsp::init (s.nominal_sample_rate ()); Iec2ppmdsp::init (s.nominal_sample_rate ()); Vumeterdsp::init (s.nominal_sample_rate ()); _pending_active = true; _meter_type = MeterPeak; _reset_dpm = 1; _reset_max = 1; _bufcnt = 0; _combined_peak = 0; } PeakMeter::~PeakMeter () { while (_kmeter.size () > 0) { delete _kmeter.back (); delete _iec1meter.back (); delete _iec2meter.back (); delete _vumeter.back (); _kmeter.pop_back (); _iec1meter.pop_back (); _iec2meter.pop_back (); _vumeter.pop_back (); } while (_peak_power.size () > 0) { _peak_buffer.pop_back (); _peak_power.pop_back (); _max_peak_signal.pop_back (); } } std::string PeakMeter::display_name () const { return _("Meter"); } /** Get peaks from @a bufs * Input acceptance is lenient - the first n buffers from @a bufs will * be metered, where n was set by the last call to setup(), excess meters will * be set to 0. * * (runs in jack realtime context) */ void PeakMeter::run (BufferSet& bufs, samplepos_t /*start_sample*/, samplepos_t /*end_sample*/, double /*speed*/, pframes_t nframes, bool) { if (!_active && !_pending_active) { return; } const bool reset_max = g_atomic_int_compare_and_exchange (&_reset_max, 1, 0); /* max-peak is set from DPM's peak-buffer, so DPM also needs to be reset in sync */ const bool reset_dpm = g_atomic_int_compare_and_exchange (&_reset_dpm, 1, 0) || reset_max; _combined_peak = 0; const uint32_t n_audio = min (current_meters.n_audio (), bufs.count ().n_audio ()); const uint32_t n_midi = min (current_meters.n_midi (), bufs.count ().n_midi ()); uint32_t n = 0; const uint32_t zoh = _session.nominal_sample_rate () * .021; const float falloff_dB = Config->get_meter_falloff () * nframes / _session.nominal_sample_rate (); _bufcnt += nframes; /* Meter MIDI */ for (uint32_t i = 0; i < n_midi; ++i, ++n) { float val = 0.0f; if (reset_dpm) { _peak_power[n] = 0; } const MidiBuffer& buf (bufs.get_midi (i)); for (MidiBuffer::const_iterator e = buf.begin (); e != buf.end (); ++e) { const Evoral::Event ev (*e, false); if (ev.is_note_on ()) { const float this_vel = ev.buffer ()[2] / 127.0; if (this_vel > val) { val = this_vel; } if (val > 0.01) { if (_combined_peak < 0.01) { _combined_peak = 0.01; } } } else { val += 1.0 / bufs.get_midi (n).capacity (); if (val > 1.0) { val = 1.0; } } } if (_peak_power[n] < (1.0 / 512.0)) { _peak_power[n] = 0; } else { /* empirical algorithm WRT to audio falloff times */ _peak_power[n] -= sqrtf (_peak_power[n]) * falloff_dB * 0.045f; } _peak_power[n] = max (_peak_power[n], val); _max_peak_signal[n] = 0; } /* Audio Meters */ for (uint32_t i = 0; i < n_audio; ++i, ++n) { if (bufs.get_audio (i).silent ()) { _peak_buffer[n] = 0; } else { _peak_buffer[n] = compute_peak (bufs.get_audio (i).data (), nframes, _peak_buffer[n]); _peak_buffer[n] = std::min (_peak_buffer[n], 100.f); // cut off at +40dBFS for falloff. _max_peak_signal[n] = std::max (_peak_buffer[n], _max_peak_signal[n]); _combined_peak = std::max (_peak_buffer[n], _combined_peak); } if (reset_max) { _max_peak_signal[n] = 0; } if (reset_dpm) { _peak_buffer[n] = 0; _peak_power[n] = -std::numeric_limits::infinity (); } else { /* falloff */ if (_peak_power[n] > -318.8f) { _peak_power[n] -= falloff_dB; } else { _peak_power[n] = -std::numeric_limits::infinity (); } _peak_power[n] = max (_peak_power[n], accurate_coefficient_to_dB (_peak_buffer[n])); /* integration buffer, retain peaks > 49Hz */ if (_bufcnt > zoh) { _peak_buffer[n] = 0; } } if (_meter_type & (MeterKrms | MeterK20 | MeterK14 | MeterK12)) { _kmeter[i]->process (bufs.get_audio (i).data (), nframes); } if (_meter_type & (MeterIEC1DIN | MeterIEC1NOR)) { _iec1meter[i]->process (bufs.get_audio (i).data (), nframes); } if (_meter_type & (MeterIEC2BBC | MeterIEC2EBU)) { _iec2meter[i]->process (bufs.get_audio (i).data (), nframes); } if (_meter_type & MeterVU) { _vumeter[i]->process (bufs.get_audio (i).data (), nframes); } } /* Zero any excess peaks */ for (uint32_t i = n; i < _peak_power.size (); ++i) { _peak_power[i] = -std::numeric_limits::infinity (); _max_peak_signal[n] = 0; } if (reset_dpm) { _combined_peak = 0; } if (_bufcnt > zoh) { _bufcnt = 0; } _active = _pending_active; } void PeakMeter::reset () { if (_active || _pending_active) { g_atomic_int_set (&_reset_dpm, 1); } else { for (size_t i = 0; i < _peak_power.size (); ++i) { _peak_power[i] = -std::numeric_limits::infinity (); _peak_buffer[i] = 0; } const uint32_t n_midi = min (current_meters.n_midi (), (uint32_t)_peak_power.size ()); for (size_t i = 0; i < n_midi; ++i) { _peak_power[i] = 0; } } /* these are handled async just fine. */ for (size_t n = 0; n < _kmeter.size (); ++n) { _kmeter[n]->reset (); _iec1meter[n]->reset (); _iec2meter[n]->reset (); _vumeter[n]->reset (); } } void PeakMeter::reset_max () { if (_active || _pending_active) { g_atomic_int_set (&_reset_max, 1); return; } for (size_t i = 0; i < _max_peak_signal.size (); ++i) { _max_peak_signal[i] = 0; _peak_buffer[i] = 0; } } bool PeakMeter::can_support_io_configuration (const ChanCount& in, ChanCount& out) { out = in; return true; } bool PeakMeter::configure_io (ChanCount in, ChanCount out) { bool changed = false; if (out != in) { // always 1:1 return false; } if (current_meters != in) { changed = true; } current_meters = in; set_max_channels (in); if (changed) { reset_max (); } return Processor::configure_io (in, out); } void PeakMeter::reflect_inputs (const ChanCount& in) { reset (); current_meters = in; reset_max (); } void PeakMeter::emit_configuration_changed () { ConfigurationChanged (current_meters, current_meters); /* EMIT SIGNAL */ } void PeakMeter::set_max_channels (const ChanCount& chn) { uint32_t const limit = chn.n_total (); const size_t n_audio = chn.n_audio (); while (_peak_power.size () > limit) { _peak_buffer.pop_back (); _peak_power.pop_back (); _max_peak_signal.pop_back (); } while (_peak_power.size () < limit) { _peak_buffer.push_back (0); if (_peak_power.size () < current_meters.n_midi ()) { _peak_power.push_back (0); } else { _peak_power.push_back (-std::numeric_limits::infinity ()); } _max_peak_signal.push_back (0); } assert (_peak_buffer.size () == limit); assert (_peak_power.size () == limit); assert (_max_peak_signal.size () == limit); /* alloc/free other audio-only meter types. */ while (_kmeter.size () > n_audio) { delete _kmeter.back (); delete _iec1meter.back (); delete _iec2meter.back (); delete _vumeter.back (); _kmeter.pop_back (); _iec1meter.pop_back (); _iec2meter.pop_back (); _vumeter.pop_back (); } while (_kmeter.size () < n_audio) { _kmeter.push_back (new Kmeterdsp ()); _iec1meter.push_back (new Iec1ppmdsp ()); _iec2meter.push_back (new Iec2ppmdsp ()); _vumeter.push_back (new Vumeterdsp ()); } assert (_kmeter.size () == n_audio); assert (_iec1meter.size () == n_audio); assert (_iec2meter.size () == n_audio); assert (_vumeter.size () == n_audio); reset (); reset_max (); } /** To be driven by the Meter signal from IO. * Caller MUST hold its own processor_lock to prevent reconfiguration * of meter size during this call. */ #define CHECKSIZE(MTR) (n < MTR.size () + n_midi && n >= n_midi) float PeakMeter::meter_level (uint32_t n, MeterType type) { if (g_atomic_int_get (&_reset_max)) { if (n < current_meters.n_midi () && type != MeterMaxPeak) { return 0; } else { return minus_infinity (); } } float mcptmp; switch (type) { case MeterKrms: case MeterK20: case MeterK14: case MeterK12: { const uint32_t n_midi = current_meters.n_midi (); if (CHECKSIZE (_kmeter)) { return accurate_coefficient_to_dB (_kmeter[n - n_midi]->read ()); } } break; case MeterIEC1DIN: case MeterIEC1NOR: { const uint32_t n_midi = current_meters.n_midi (); if (CHECKSIZE (_iec1meter)) { return accurate_coefficient_to_dB (_iec1meter[n - n_midi]->read ()); } } break; case MeterIEC2BBC: case MeterIEC2EBU: { const uint32_t n_midi = current_meters.n_midi (); if (CHECKSIZE (_iec2meter)) { return accurate_coefficient_to_dB (_iec2meter[n - n_midi]->read ()); } } break; case MeterVU: { const uint32_t n_midi = current_meters.n_midi (); if (CHECKSIZE (_vumeter)) { return accurate_coefficient_to_dB (_vumeter[n - n_midi]->read ()); } } break; case MeterPeak: case MeterPeak0dB: if (n < _peak_power.size ()) { return _peak_power[n]; } break; case MeterMCP: mcptmp = _combined_peak; return accurate_coefficient_to_dB (mcptmp); case MeterMaxSignal: assert (0); break; default: case MeterMaxPeak: if (n < _max_peak_signal.size ()) { return accurate_coefficient_to_dB (_max_peak_signal[n]); } break; } return minus_infinity (); } void PeakMeter::set_meter_type (MeterType t) { if (t == _meter_type) { return; } _meter_type = t; if (t & (MeterKrms | MeterK20 | MeterK14 | MeterK12)) { const size_t n_audio = current_meters.n_audio (); for (size_t n = 0; n < n_audio; ++n) { _kmeter[n]->reset (); } } if (t & (MeterIEC1DIN | MeterIEC1NOR)) { const size_t n_audio = current_meters.n_audio (); for (size_t n = 0; n < n_audio; ++n) { _iec1meter[n]->reset (); } } if (t & (MeterIEC2BBC | MeterIEC2EBU)) { const size_t n_audio = current_meters.n_audio (); for (size_t n = 0; n < n_audio; ++n) { _iec2meter[n]->reset (); } } if (t & MeterVU) { const size_t n_audio = current_meters.n_audio (); for (size_t n = 0; n < n_audio; ++n) { _vumeter[n]->reset (); } } MeterTypeChanged (t); /* EMIT SIGNAL */ } XMLNode& PeakMeter::state () { XMLNode& node (Processor::state ()); node.set_property ("type", "meter"); return node; }