/* Copyright (C) 2006 Paul Davis This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include "pbd/compose.h" #include "ardour/audio_buffer.h" #include "ardour/buffer_set.h" #include "ardour/dB.h" #include "ardour/meter.h" #include "ardour/midi_buffer.h" #include "ardour/session.h" #include "ardour/rc_configuration.h" #include "ardour/runtime_functions.h" using namespace std; using namespace ARDOUR; PBD::Signal0 Metering::Meter; PeakMeter::PeakMeter (Session& s, const std::string& name) : Processor (s, string_compose ("meter-%1", name)) { Kmeterdsp::init(s.nominal_frame_rate()); } PeakMeter::~PeakMeter () { while (_kmeter.size() > 0) { delete (_kmeter.back()); _kmeter.pop_back(); } } /** Get peaks from @a bufs * Input acceptance is lenient - the first n buffers from @a bufs will * be metered, where n was set by the last call to setup(), excess meters will * be set to 0. * * (runs in jack realtime context) */ void PeakMeter::run (BufferSet& bufs, framepos_t /*start_frame*/, framepos_t /*end_frame*/, pframes_t nframes, bool) { if (!_active && !_pending_active) { return; } // cerr << "meter " << name() << " runs with " << bufs.available() << " inputs\n"; const uint32_t n_audio = min (current_meters.n_audio(), bufs.count().n_audio()); const uint32_t n_midi = min (current_meters.n_midi(), bufs.count().n_midi()); uint32_t n = 0; // Meter MIDI in to the first n_midi peaks for (uint32_t i = 0; i < n_midi; ++i, ++n) { float val = 0.0f; MidiBuffer& buf (bufs.get_midi(i)); for (MidiBuffer::iterator e = buf.begin(); e != buf.end(); ++e) { const Evoral::MIDIEvent ev(*e, false); if (ev.is_note_on()) { const float this_vel = ev.buffer()[2] / 127.0; if (this_vel > val) { val = this_vel; } } else { val += 1.0 / bufs.get_midi(n).capacity(); if (val > 1.0) { val = 1.0; } } } _peak_signal[n] = max (val, _peak_signal[n]); } // Meter audio in to the rest of the peaks for (uint32_t i = 0; i < n_audio; ++i, ++n) { _peak_signal[n] = compute_peak (bufs.get_audio(i).data(), nframes, _peak_signal[n]); if (_meter_type & MeterKrms) { _kmeter[i]->process(bufs.get_audio(i).data(), nframes); } } // Zero any excess peaks for (uint32_t i = n; i < _peak_signal.size(); ++i) { _peak_signal[i] = 0.0f; } _active = _pending_active; } void PeakMeter::reset () { for (size_t i = 0; i < _peak_signal.size(); ++i) { _peak_signal[i] = 0.0f; } } void PeakMeter::reset_max () { for (size_t i = 0; i < _max_peak_power.size(); ++i) { _max_peak_power[i] = -INFINITY; _max_peak_signal[i] = 0; } } bool PeakMeter::can_support_io_configuration (const ChanCount& in, ChanCount& out) const { out = in; return true; } bool PeakMeter::configure_io (ChanCount in, ChanCount out) { if (out != in) { // always 1:1 return false; } current_meters = in; reset_max_channels (in); return Processor::configure_io (in, out); } void PeakMeter::reflect_inputs (const ChanCount& in) { current_meters = in; const size_t limit = min (_peak_signal.size(), (size_t) current_meters.n_total ()); const size_t n_midi = min (_peak_signal.size(), (size_t) current_meters.n_midi()); const size_t n_audio = current_meters.n_audio(); for (size_t n = 0; n < limit; ++n) { if (n < n_midi) { _visible_peak_power[n] = 0; } else { _visible_peak_power[n] = -INFINITY; } } for (size_t n = 0; n < n_audio; ++n) { _kmeter[n]->reset(); } reset_max(); ConfigurationChanged (in, in); /* EMIT SIGNAL */ } void PeakMeter::reset_max_channels (const ChanCount& chn) { uint32_t const limit = chn.n_total(); const size_t n_audio = chn.n_audio(); while (_peak_signal.size() > limit) { _peak_signal.pop_back(); _visible_peak_power.pop_back(); _max_peak_signal.pop_back(); _max_peak_power.pop_back(); } while (_peak_signal.size() < limit) { _peak_signal.push_back(0); _visible_peak_power.push_back(minus_infinity()); _max_peak_signal.push_back(0); _max_peak_power.push_back(minus_infinity()); } assert(_peak_signal.size() == limit); assert(_visible_peak_power.size() == limit); assert(_max_peak_signal.size() == limit); assert(_max_peak_power.size() == limit); /* alloc/free other audio-only meter types. */ while (_kmeter.size() > n_audio) { delete (_kmeter.back()); _kmeter.pop_back(); } while (_kmeter.size() < n_audio) { _kmeter.push_back(new Kmeterdsp()); } assert(_kmeter.size() == n_audio); } /** To be driven by the Meter signal from IO. * Caller MUST hold its own processor_lock to prevent reconfiguration * of meter size during this call. */ void PeakMeter::meter () { if (!_active) { return; } assert(_visible_peak_power.size() == _peak_signal.size()); const size_t limit = min (_peak_signal.size(), (size_t) current_meters.n_total ()); const size_t n_midi = min (_peak_signal.size(), (size_t) current_meters.n_midi()); for (size_t n = 0; n < limit; ++n) { /* grab peak since last read */ float new_peak = _peak_signal[n]; /* XXX we should use atomic exchange from here ... */ _peak_signal[n] = 0; /* ... to here */ if (n < n_midi) { _max_peak_power[n] = -INFINITY; // std::max (new_peak, _max_peak_power[n]); // XXX _max_peak_signal[n] = 0; if (Config->get_meter_falloff() == 0.0f || new_peak > _visible_peak_power[n]) { ; } else { /* empirical WRT to falloff times , 0.01f ^= 100 Hz update rate */ new_peak = _visible_peak_power[n] - sqrt(_visible_peak_power[n] * Config->get_meter_falloff() * 0.01f * 0.0002f); if (new_peak < (1.0 / 512.0)) new_peak = 0; } _visible_peak_power[n] = new_peak; continue; } /* AUDIO */ /* compute new visible value using falloff */ _max_peak_signal[n] = std::max(new_peak, _max_peak_signal[n]); if (new_peak > 0.0) { new_peak = accurate_coefficient_to_dB (new_peak); } else { new_peak = minus_infinity(); } /* update max peak */ _max_peak_power[n] = std::max (new_peak, _max_peak_power[n]); if (Config->get_meter_falloff() == 0.0f || new_peak > _visible_peak_power[n]) { _visible_peak_power[n] = new_peak; } else { // do falloff new_peak = _visible_peak_power[n] - (Config->get_meter_falloff() * 0.01f); _visible_peak_power[n] = std::max (new_peak, -INFINITY); } } } float PeakMeter::meter_level(uint32_t n, MeterType type) { switch (type) { case MeterKrms: { const uint32_t n_midi = current_meters.n_midi(); if ((n - n_midi) < _kmeter.size() && (n - n_midi) >= 0) { #if 0 return fast_coefficient_to_dB (_kmeter[n-n_midi]->read()); #else return accurate_coefficient_to_dB (_kmeter[n-n_midi]->read()); #endif } return minus_infinity(); } case MeterPeak: return peak_power(n); case MeterMaxSignal: if (n < _max_peak_signal.size()) { return _max_peak_signal[n]; } else { return minus_infinity(); } default: case MeterMaxPeak: if (n < _max_peak_power.size()) { return _max_peak_power[n]; } else { return minus_infinity(); } } } void PeakMeter::set_type(MeterType t) { if (t == _meter_type) { return; } _meter_type = t; if (t & MeterKrms) { const size_t n_audio = current_meters.n_audio(); for (size_t n = 0; n < n_audio; ++n) { _kmeter[n]->reset(); } } TypeChanged(t); } XMLNode& PeakMeter::state (bool full_state) { XMLNode& node (Processor::state (full_state)); node.add_property("type", "meter"); return node; }