/* Copyright (C) 2006 Paul Davis This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include "pbd/compose.h" #include "ardour/audio_buffer.h" #include "ardour/buffer_set.h" #include "ardour/dB.h" #include "ardour/meter.h" #include "ardour/midi_buffer.h" #include "ardour/session.h" #include "ardour/rc_configuration.h" #include "ardour/runtime_functions.h" using namespace std; using namespace ARDOUR; PeakMeter::PeakMeter (Session& s, const std::string& name) : Processor (s, string_compose ("meter-%1", name)) { Kmeterdsp::init(s.nominal_sample_rate()); Iec1ppmdsp::init(s.nominal_sample_rate()); Iec2ppmdsp::init(s.nominal_sample_rate()); Vumeterdsp::init(s.nominal_sample_rate()); _pending_active = true; _meter_type = MeterPeak; _reset_dpm = true; _reset_max = true; _bufcnt = 0; _combined_peak = 0; } PeakMeter::~PeakMeter () { while (_kmeter.size() > 0) { delete (_kmeter.back()); delete (_iec1meter.back()); delete (_iec2meter.back()); delete (_vumeter.back()); _kmeter.pop_back(); _iec1meter.pop_back(); _iec2meter.pop_back(); _vumeter.pop_back(); } while (_peak_power.size() > 0) { _peak_buffer.pop_back(); _peak_power.pop_back(); _max_peak_signal.pop_back(); } } /** Get peaks from @a bufs * Input acceptance is lenient - the first n buffers from @a bufs will * be metered, where n was set by the last call to setup(), excess meters will * be set to 0. * * (runs in jack realtime context) */ void PeakMeter::run (BufferSet& bufs, samplepos_t /*start_sample*/, samplepos_t /*end_sample*/, double /*speed*/, pframes_t nframes, bool) { if (!_active && !_pending_active) { return; } const bool do_reset_max = _reset_max; const bool do_reset_dpm = _reset_dpm; _reset_max = false; _reset_dpm = false; _combined_peak = 0; // cerr << "meter " << name() << " runs with " << bufs.available() << " inputs\n"; const uint32_t n_audio = min (current_meters.n_audio(), bufs.count().n_audio()); const uint32_t n_midi = min (current_meters.n_midi(), bufs.count().n_midi()); uint32_t n = 0; const float falloff_dB = Config->get_meter_falloff() * nframes / _session.nominal_sample_rate(); const uint32_t zoh = _session.nominal_sample_rate() * .021; _bufcnt += nframes; // Meter MIDI in to the first n_midi peaks for (uint32_t i = 0; i < n_midi; ++i, ++n) { float val = 0.0f; const MidiBuffer& buf (bufs.get_midi(i)); for (MidiBuffer::const_iterator e = buf.begin(); e != buf.end(); ++e) { const Evoral::Event ev(*e, false); if (ev.is_note_on()) { const float this_vel = ev.buffer()[2] / 127.0; if (this_vel > val) { val = this_vel; } if (val > 0.01) { if (_combined_peak < 0.01) { _combined_peak = 0.01; } } } else { val += 1.0 / bufs.get_midi(n).capacity(); if (val > 1.0) { val = 1.0; } } } if (_peak_power[n] < (1.0 / 512.0)) { _peak_power[n] = 0; } else { /* empirical algorithm WRT to audio falloff times */ _peak_power[n] -= sqrtf (_peak_power[n]) * falloff_dB * 0.045f; } _peak_power[n] = max(_peak_power[n], val); _max_peak_signal[n] = 0; } // Meter audio in to the rest of the peaks for (uint32_t i = 0; i < n_audio; ++i, ++n) { if (bufs.get_audio(i).silent()) { _peak_buffer[n] = 0; } else { _peak_buffer[n] = compute_peak (bufs.get_audio(i).data(), nframes, _peak_buffer[n]); _peak_buffer[n] = std::min (_peak_buffer[n], 100.f); // cut off at +40dBFS for falloff. _max_peak_signal[n] = std::max(_peak_buffer[n], _max_peak_signal[n]); // todo sync reset _combined_peak = std::max(_peak_buffer[n], _combined_peak); } if (do_reset_max) { _max_peak_signal[n] = 0; } if (do_reset_dpm) { _peak_buffer[n] = 0; _peak_power[n] = -std::numeric_limits::infinity(); } else { // falloff if (_peak_power[n] > -318.8f) { _peak_power[n] -= falloff_dB; } else { _peak_power[n] = -std::numeric_limits::infinity(); } _peak_power[n] = max(_peak_power[n], accurate_coefficient_to_dB(_peak_buffer[n])); // integration buffer, retain peaks > 49Hz if (_bufcnt > zoh) { _peak_buffer[n] = 0; } } if (_meter_type & (MeterKrms | MeterK20 | MeterK14 | MeterK12)) { _kmeter[i]->process(bufs.get_audio(i).data(), nframes); } if (_meter_type & (MeterIEC1DIN | MeterIEC1NOR)) { _iec1meter[i]->process(bufs.get_audio(i).data(), nframes); } if (_meter_type & (MeterIEC2BBC | MeterIEC2EBU)) { _iec2meter[i]->process(bufs.get_audio(i).data(), nframes); } if (_meter_type & MeterVU) { _vumeter[i]->process(bufs.get_audio(i).data(), nframes); } } // Zero any excess peaks for (uint32_t i = n; i < _peak_power.size(); ++i) { _peak_power[i] = -std::numeric_limits::infinity(); _max_peak_signal[n] = 0; } if (_bufcnt > zoh) { _bufcnt = 0; } _active = _pending_active; } void PeakMeter::reset () { if (_active || _pending_active) { _reset_dpm = true; } else { for (size_t i = 0; i < _peak_power.size(); ++i) { _peak_power[i] = -std::numeric_limits::infinity(); _peak_buffer[i] = 0; } } // these are handled async just fine. for (size_t n = 0; n < _kmeter.size(); ++n) { _kmeter[n]->reset(); _iec1meter[n]->reset(); _iec2meter[n]->reset(); _vumeter[n]->reset(); } } void PeakMeter::reset_max () { if (_active || _pending_active) { _reset_max = true; return; } for (size_t i = 0; i < _max_peak_signal.size(); ++i) { _max_peak_signal[i] = 0; _peak_buffer[i] = 0; } } bool PeakMeter::can_support_io_configuration (const ChanCount& in, ChanCount& out) { out = in; return true; } bool PeakMeter::configure_io (ChanCount in, ChanCount out) { bool changed = false; if (out != in) { // always 1:1 return false; } if (current_meters != in) { changed = true; } current_meters = in; set_max_channels (in); if (changed) { reset_max(); } return Processor::configure_io (in, out); } void PeakMeter::reflect_inputs (const ChanCount& in) { reset(); current_meters = in; reset_max(); // ConfigurationChanged() postponed } void PeakMeter::emit_configuration_changed () { ConfigurationChanged (current_meters, current_meters); /* EMIT SIGNAL */ } void PeakMeter::set_max_channels (const ChanCount& chn) { uint32_t const limit = chn.n_total(); const size_t n_audio = chn.n_audio(); while (_peak_power.size() > limit) { _peak_buffer.pop_back(); _peak_power.pop_back(); _max_peak_signal.pop_back(); } while (_peak_power.size() < limit) { _peak_buffer.push_back(0); _peak_power.push_back(-std::numeric_limits::infinity()); _max_peak_signal.push_back(0); } assert(_peak_buffer.size() == limit); assert(_peak_power.size() == limit); assert(_max_peak_signal.size() == limit); /* alloc/free other audio-only meter types. */ while (_kmeter.size() > n_audio) { delete (_kmeter.back()); delete (_iec1meter.back()); delete (_iec2meter.back()); delete (_vumeter.back()); _kmeter.pop_back(); _iec1meter.pop_back(); _iec2meter.pop_back(); _vumeter.pop_back(); } while (_kmeter.size() < n_audio) { _kmeter.push_back(new Kmeterdsp()); _iec1meter.push_back(new Iec1ppmdsp()); _iec2meter.push_back(new Iec2ppmdsp()); _vumeter.push_back(new Vumeterdsp()); } assert(_kmeter.size() == n_audio); assert(_iec1meter.size() == n_audio); assert(_iec2meter.size() == n_audio); assert(_vumeter.size() == n_audio); reset(); reset_max(); } /** To be driven by the Meter signal from IO. * Caller MUST hold its own processor_lock to prevent reconfiguration * of meter size during this call. */ #define CHECKSIZE(MTR) (n < MTR.size() + n_midi && n >= n_midi) float PeakMeter::meter_level(uint32_t n, MeterType type) { float mcptmp; switch (type) { case MeterKrms: case MeterK20: case MeterK14: case MeterK12: { const uint32_t n_midi = current_meters.n_midi(); if (CHECKSIZE(_kmeter)) { return accurate_coefficient_to_dB (_kmeter[n - n_midi]->read()); } } break; case MeterIEC1DIN: case MeterIEC1NOR: { const uint32_t n_midi = current_meters.n_midi(); if (CHECKSIZE(_iec1meter)) { return accurate_coefficient_to_dB (_iec1meter[n - n_midi]->read()); } } break; case MeterIEC2BBC: case MeterIEC2EBU: { const uint32_t n_midi = current_meters.n_midi(); if (CHECKSIZE(_iec2meter)) { return accurate_coefficient_to_dB (_iec2meter[n - n_midi]->read()); } } break; case MeterVU: { const uint32_t n_midi = current_meters.n_midi(); if (CHECKSIZE(_vumeter)) { return accurate_coefficient_to_dB (_vumeter[n - n_midi]->read()); } } break; case MeterPeak: case MeterPeak0dB: if (n < _peak_power.size()) { return _peak_power[n]; } break; case MeterMCP: mcptmp = _combined_peak; return accurate_coefficient_to_dB(mcptmp); case MeterMaxSignal: assert(0); break; default: case MeterMaxPeak: if (n < _max_peak_signal.size()) { return accurate_coefficient_to_dB(_max_peak_signal[n]); } break; } return minus_infinity(); } void PeakMeter::set_type(MeterType t) { if (t == _meter_type) { return; } _meter_type = t; if (t & (MeterKrms | MeterK20 | MeterK14 | MeterK12)) { const size_t n_audio = current_meters.n_audio(); for (size_t n = 0; n < n_audio; ++n) { _kmeter[n]->reset(); } } if (t & (MeterIEC1DIN | MeterIEC1NOR)) { const size_t n_audio = current_meters.n_audio(); for (size_t n = 0; n < n_audio; ++n) { _iec1meter[n]->reset(); } } if (t & (MeterIEC2BBC | MeterIEC2EBU)) { const size_t n_audio = current_meters.n_audio(); for (size_t n = 0; n < n_audio; ++n) { _iec2meter[n]->reset(); } } if (t & MeterVU) { const size_t n_audio = current_meters.n_audio(); for (size_t n = 0; n < n_audio; ++n) { _vumeter[n]->reset(); } } TypeChanged(t); } XMLNode& PeakMeter::state () { XMLNode& node (Processor::state ()); node.set_property("type", "meter"); return node; }