#include #include #include "ardour/interpolation.h" using namespace ARDOUR; nframes_t FixedPointLinearInterpolation::interpolate (int channel, nframes_t nframes, Sample *input, Sample *output) { // the idea behind phase is that when the speed is not 1.0, we have to // interpolate between samples and then we have to store where we thought we were. // rather than being at sample N or N+1, we were at N+0.8792922 // so the "phase" element, if you want to think about this way, // varies from 0 to 1, representing the "offset" between samples uint64_t the_phase = last_phase[channel]; // acceleration int64_t phi_delta; // phi = fixed point speed if (phi != target_phi) { phi_delta = ((int64_t)(target_phi - phi)) / nframes; } else { phi_delta = 0; } // index in the input buffers nframes_t i = 0; for (nframes_t outsample = 0; outsample < nframes; ++outsample) { i = the_phase >> 24; Sample fractional_phase_part = (the_phase & fractional_part_mask) / binary_scaling_factor; if (input && output) { // Linearly interpolate into the output buffer output[outsample] = input[i] * (1.0f - fractional_phase_part) + input[i+1] * fractional_phase_part; } the_phase += phi + phi_delta; } last_phase[channel] = (the_phase & fractional_part_mask); // playback distance return i; } void FixedPointLinearInterpolation::add_channel_to (int /*input_buffer_size*/, int /*output_buffer_size*/) { last_phase.push_back (0); } void FixedPointLinearInterpolation::remove_channel_from () { last_phase.pop_back (); } void FixedPointLinearInterpolation::reset() { for (size_t i = 0; i <= last_phase.size(); i++) { last_phase[i] = 0; } } nframes_t LinearInterpolation::interpolate (int channel, nframes_t nframes, Sample *input, Sample *output) { // index in the input buffers nframes_t i = 0; double acceleration; double distance = 0.0; if (_speed != _target_speed) { acceleration = _target_speed - _speed; } else { acceleration = 0.0; } distance = phase[channel]; for (nframes_t outsample = 0; outsample < nframes; ++outsample) { i = floor(distance); Sample fractional_phase_part = distance - i; if (fractional_phase_part >= 1.0) { fractional_phase_part -= 1.0; i++; } if (input && output) { // Linearly interpolate into the output buffer output[outsample] = input[i] * (1.0f - fractional_phase_part) + input[i+1] * fractional_phase_part; } distance += _speed + acceleration; } i = floor(distance); phase[channel] = distance - floor(distance); return i; } nframes_t CubicInterpolation::interpolate (int channel, nframes_t nframes, Sample *input, Sample *output) { // index in the input buffers nframes_t i = 0; double acceleration; double distance = 0.0; if (_speed != _target_speed) { acceleration = _target_speed - _speed; } else { acceleration = 0.0; } distance = phase[channel]; for (nframes_t outsample = 0; outsample < nframes; ++outsample) { i = floor(distance); Sample fractional_phase_part = distance - i; if (fractional_phase_part >= 1.0) { fractional_phase_part -= 1.0; i++; } if (input && output) { // Cubically interpolate into the output buffer output[outsample] = cube_interp(fractional_phase_part, input[i-1], input[i], input[i+1], input[i+2]); } distance += _speed + acceleration; } i = floor(distance); phase[channel] = distance - floor(distance); return i; } SplineInterpolation::SplineInterpolation() { // precompute LU-factorization of matrix A // see "Teubner Taschenbuch der Mathematik", p. 1105 // We only need to calculate up to 20, because they // won't change any more above that _m[0] = 4.0; for (int i = 0; i <= 20 - 2; i++) { _l[i] = 1.0 / _m[i]; _m[i+1] = 4.0 - _l[i]; } } nframes_t SplineInterpolation::interpolate (int channel, nframes_t nframes, Sample *input, Sample *output) { // How many input samples we need nframes_t n = ceil (double(nframes) * _speed + phase[channel]); // hans - we run on 64bit systems too .... no casting pointer to a sized integer, please printf("======== n: %u nframes: %u input: %p, output: %p\n", n, nframes, input, output); if (n <= 3) { return 0; } double M[n], t[n-2]; // natural spline: boundary conditions M[0] = 0.0; M[n - 1] = 0.0; if (input) { // solve L * t = d t[0] = 6.0 * (input[0] - 2*input[1] + input[2]); for (nframes_t i = 1; i <= n - 3; i++) { t[i] = 6.0 * (input[i] - 2*input[i+1] + input[i+2]) - l(i-1) * t[i-1]; } // solve U * M = t M[n-2] = t[n-3] / m(n-3); //printf(" M[%d] = %lf \n", n-1 ,M[n-1]); //printf(" M[%d] = %lf \n", n-2 ,M[n-2]); for (nframes_t i = n-4;; i--) { M[i+1] = (t[i]-M[i+2])/m(i); //printf(" M[%d] = %lf\n", i+1 ,M[i+1]); if ( i == 0 ) break; } M[1] = 0.0; M[n - 2] = 0.0; //printf(" M[%d] = %lf \n", 0 ,M[0]); } assert (M[0] == 0.0 && M[n-1] == 0.0); // now interpolate // index in the input buffers nframes_t i = 0; double acceleration; double distance = 0.0; if (_speed != _target_speed) { acceleration = _target_speed - _speed; } else { acceleration = 0.0; } distance = phase[channel]; assert(distance >= 0.0 && distance < 1.0); for (nframes_t outsample = 0; outsample < nframes; outsample++) { i = floor(distance); double x = double(distance) - double(i); // if distance is something like 0.999999999999 // it will get rounded to 1 in the conversion to float above while (x >= 1.0) { x -= 1.0; i++; } assert(x >= 0.0 && x < 1.0); if (input && output) { assert (i <= n-1); double a3 = (M[i+1] - M[i]) / 6.0; double a2 = M[i] / 2.0; double a1 = input[i+1] - input[i] - (M[i+1] + 2.0*M[i])/6.0; double a0 = input[i]; // interpolate into the output buffer output[outsample] = ((a3*x + a2)*x + a1)*x + a0; //std::cout << "input[" << i << "/" << i+1 << "] = " << input[i] << "/" << input[i+1] << " distance: " << distance << " output[" << outsample << "] = " << output[outsample] << std::endl; } distance += _speed + acceleration; } i = floor(distance); phase[channel] = distance - floor(distance); assert (phase[channel] >= 0.0 && phase[channel] < 1.0); printf("Moved input frames: %u ", i); return i; } LibSamplerateInterpolation::LibSamplerateInterpolation() : state (0) { _speed = 1.0; } LibSamplerateInterpolation::~LibSamplerateInterpolation() { for (size_t i = 0; i < state.size(); i++) { state[i] = src_delete (state[i]); } } void LibSamplerateInterpolation::set_speed (double new_speed) { _speed = new_speed; for (size_t i = 0; i < state.size(); i++) { src_set_ratio (state[i], 1.0/_speed); } } void LibSamplerateInterpolation::reset_state () { printf("INTERPOLATION: reset_state()\n"); for (size_t i = 0; i < state.size(); i++) { if (state[i]) { src_reset (state[i]); } else { state[i] = src_new (SRC_SINC_FASTEST, 1, &error); } } } void LibSamplerateInterpolation::add_channel_to (int input_buffer_size, int output_buffer_size) { SRC_DATA* newdata = new SRC_DATA; /* Set up sample rate converter info. */ newdata->end_of_input = 0 ; newdata->input_frames = input_buffer_size; newdata->output_frames = output_buffer_size; newdata->input_frames_used = 0 ; newdata->output_frames_gen = 0 ; newdata->src_ratio = 1.0/_speed; data.push_back (newdata); state.push_back (0); reset_state (); } void LibSamplerateInterpolation::remove_channel_from () { SRC_DATA* d = data.back (); delete d; data.pop_back (); if (state.back ()) { src_delete (state.back ()); } state.pop_back (); reset_state (); } nframes_t LibSamplerateInterpolation::interpolate (int channel, nframes_t nframes, Sample *input, Sample *output) { if (!data.size ()) { printf ("ERROR: trying to interpolate with no channels\n"); return 0; } data[channel]->data_in = input; data[channel]->data_out = output; data[channel]->input_frames = nframes * _speed; data[channel]->output_frames = nframes; data[channel]->src_ratio = 1.0/_speed; if ((error = src_process (state[channel], data[channel]))) { printf ("\nError : %s\n\n", src_strerror (error)); exit (1); } //printf("INTERPOLATION: channel %d input_frames_used: %d\n", channel, data[channel]->input_frames_used); return data[channel]->input_frames_used; }