#include #include #include "ardour/interpolation.h" using namespace ARDOUR; nframes_t FixedPointLinearInterpolation::interpolate (int channel, nframes_t nframes, Sample *input, Sample *output) { // the idea behind phase is that when the speed is not 1.0, we have to // interpolate between samples and then we have to store where we thought we were. // rather than being at sample N or N+1, we were at N+0.8792922 // so the "phase" element, if you want to think about this way, // varies from 0 to 1, representing the "offset" between samples uint64_t the_phase = last_phase[channel]; // acceleration int64_t phi_delta; // phi = fixed point speed if (phi != target_phi) { phi_delta = ((int64_t)(target_phi - phi)) / nframes; } else { phi_delta = 0; } // index in the input buffers nframes_t i = 0; for (nframes_t outsample = 0; outsample < nframes; ++outsample) { i = the_phase >> 24; Sample fractional_phase_part = (the_phase & fractional_part_mask) / binary_scaling_factor; if (input && output) { // Linearly interpolate into the output buffer output[outsample] = input[i] * (1.0f - fractional_phase_part) + input[i+1] * fractional_phase_part; } the_phase += phi + phi_delta; } last_phase[channel] = (the_phase & fractional_part_mask); // playback distance return i; } void FixedPointLinearInterpolation::add_channel_to (int /*input_buffer_size*/, int /*output_buffer_size*/) { last_phase.push_back (0); } void FixedPointLinearInterpolation::remove_channel_from () { last_phase.pop_back (); } void FixedPointLinearInterpolation::reset() { for (size_t i = 0; i <= last_phase.size(); i++) { last_phase[i] = 0; } } nframes_t LinearInterpolation::interpolate (int channel, nframes_t nframes, Sample *input, Sample *output) { // index in the input buffers nframes_t i = 0; double acceleration; double distance = 0.0; if (_speed != _target_speed) { acceleration = _target_speed - _speed; } else { acceleration = 0.0; } distance = phase[channel]; //printf("processing channel: %d\n", channel); //printf("phase before: %lf\n", phase[channel]); for (nframes_t outsample = 0; outsample < nframes; ++outsample) { i = floor(distance); Sample fractional_phase_part = distance - i; if (fractional_phase_part >= 1.0) { fractional_phase_part -= 1.0; i++; } //printf("I: %u, distance: %lf, fractional_phase_part: %lf\n", i, distance, fractional_phase_part); if (input && output) { // Linearly interpolate into the output buffer output[outsample] = input[i] * (1.0f - fractional_phase_part) + input[i+1] * fractional_phase_part; } //printf("distance before: %lf\n", distance); distance += _speed + acceleration; //printf("distance after: %lf, _speed: %lf\n", distance, _speed); } //printf("before assignment: i: %d, distance: %lf\n", i, distance); i = floor(distance); //printf("after assignment: i: %d, distance: %16lf\n", i, distance); phase[channel] = distance - floor(distance); //printf("speed: %16lf, i after: %d, distance after: %16lf, phase after: %16lf\n", _speed, i, distance, phase[channel]); return i; } SplineInterpolation::SplineInterpolation() { // precompute LU-factorization of matrix A // see "Teubner Taschenbuch der Mathematik", p. 1105 m[0] = 4.0; for (int i = 0; i <= MAX_PERIOD_SIZE - 2; i++) { l[i] = 1.0 / m[i]; m[i+1] = 4.0 - l[i]; } } nframes_t SplineInterpolation::interpolate (int channel, nframes_t nframes, Sample *input, Sample *output) { // How many input samples we need nframes_t n = ceil (double(nframes) * _speed) + 2; // |------------------------------------------^ // this won't be here in the debugged version. double M[n], t[n-2]; // natural spline: boundary conditions M[0] = 0.0; M[n - 1] = 0.0; // solve L * t = d // see "Teubner Taschenbuch der Mathematik", p. 1105 t[0] = 6.0 * (input[0] - 2*input[1] + input[2]); for (nframes_t i = 1; i <= n - 3; i++) { t[i] = 6.0 * (input[i] - 2*input[i+1] + input[i+2]) - l[i-1] * t[i-1]; } // solve R * M = t // see "Teubner Taschenbuch der Mathematik", p. 1105 M[n-2] = -t[n-3] / m[n-3]; for (nframes_t i = n-4;; i--) { M[i+1] = -(t[i] + M[i+2]) / m[i]; if ( i == 0 ) break; } // now interpolate // index in the input buffers nframes_t i = 0; double acceleration; double distance = 0.0; if (_speed != _target_speed) { acceleration = _target_speed - _speed; } else { acceleration = 0.0; } distance = phase[channel]; for (nframes_t outsample = 0; outsample < nframes; outsample++) { i = floor(distance); Sample x = distance - i; /* this would break the assertion below if (x >= 1.0) { x -= 1.0; i++; } */ if (input && output) { assert (i <= n-1); double a0 = input[i]; double a1 = input[i+1] - input[i] - M[i+1]/6.0 - M[i]/3.0; double a2 = M[i] / 2.0; double a3 = (M[i+1] - M[i]) / 6.0; // interpolate into the output buffer output[outsample] = ((a3*x +a2)*x +a1)*x + a0; } distance += _speed + acceleration; } i = floor(distance); phase[channel] = distance - floor(distance); return i; } LibSamplerateInterpolation::LibSamplerateInterpolation() : state (0) { _speed = 1.0; } LibSamplerateInterpolation::~LibSamplerateInterpolation() { for (size_t i = 0; i < state.size(); i++) { state[i] = src_delete (state[i]); } } void LibSamplerateInterpolation::set_speed (double new_speed) { _speed = new_speed; for (size_t i = 0; i < state.size(); i++) { src_set_ratio (state[i], 1.0/_speed); } } void LibSamplerateInterpolation::reset_state () { printf("INTERPOLATION: reset_state()\n"); for (size_t i = 0; i < state.size(); i++) { if (state[i]) { src_reset (state[i]); } else { state[i] = src_new (SRC_SINC_FASTEST, 1, &error); } } } void LibSamplerateInterpolation::add_channel_to (int input_buffer_size, int output_buffer_size) { SRC_DATA* newdata = new SRC_DATA; /* Set up sample rate converter info. */ newdata->end_of_input = 0 ; newdata->input_frames = input_buffer_size; newdata->output_frames = output_buffer_size; newdata->input_frames_used = 0 ; newdata->output_frames_gen = 0 ; newdata->src_ratio = 1.0/_speed; data.push_back (newdata); state.push_back (0); reset_state (); } void LibSamplerateInterpolation::remove_channel_from () { SRC_DATA* d = data.back (); delete d; data.pop_back (); if (state.back ()) { src_delete (state.back ()); } state.pop_back (); reset_state (); } nframes_t LibSamplerateInterpolation::interpolate (int channel, nframes_t nframes, Sample *input, Sample *output) { if (!data.size ()) { printf ("ERROR: trying to interpolate with no channels\n"); return 0; } data[channel]->data_in = input; data[channel]->data_out = output; data[channel]->input_frames = nframes * _speed; data[channel]->output_frames = nframes; data[channel]->src_ratio = 1.0/_speed; if ((error = src_process (state[channel], data[channel]))) { printf ("\nError : %s\n\n", src_strerror (error)); exit (1); } //printf("INTERPOLATION: channel %d input_frames_used: %d\n", channel, data[channel]->input_frames_used); return data[channel]->input_frames_used; }