/* Copyright (C) 2012 Paul Davis This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include "ardour/interpolation.h" #include "ardour/midi_buffer.h" using namespace ARDOUR; framecnt_t LinearInterpolation::interpolate (int channel, framecnt_t nframes, Sample *input, Sample *output) { // index in the input buffers framecnt_t i = 0; double acceleration = 0; if (_speed != _target_speed) { acceleration = _target_speed - _speed; } for (framecnt_t outsample = 0; outsample < nframes; ++outsample) { double const d = phase[channel] + outsample * (_speed + acceleration); i = floor(d); Sample fractional_phase_part = d - i; if (fractional_phase_part >= 1.0) { fractional_phase_part -= 1.0; i++; } if (input && output) { // Linearly interpolate into the output buffer output[outsample] = input[i] * (1.0f - fractional_phase_part) + input[i+1] * fractional_phase_part; } } double const distance = phase[channel] + nframes * (_speed + acceleration); i = floor(distance); phase[channel] = distance - i; return i; } framecnt_t CubicInterpolation::interpolate (int channel, framecnt_t nframes, Sample *input, Sample *output) { // index in the input buffers framecnt_t i = 0; double acceleration; double distance = 0.0; if (_speed != _target_speed) { acceleration = _target_speed - _speed; } else { acceleration = 0.0; } distance = phase[channel]; if (nframes < 3) { /* no interpolation possible */ if (input && output) { for (i = 0; i < nframes; ++i) { output[i] = input[i]; } } return nframes; } /* keep this condition out of the inner loop */ if (input && output) { Sample inm1; if (floor (distance) == 0.0) { /* best guess for the fake point we have to add to be able to interpolate at i == 0: .... maintain slope of first actual segment ... */ inm1 = input[i] - (input[i+1] - input[i]); } else { inm1 = input[i-1]; } for (framecnt_t outsample = 0; outsample < nframes; ++outsample) { float f = floor (distance); float fractional_phase_part = distance - f; /* get the index into the input we should start with */ i = lrintf (f); /* fractional_phase_part only reaches 1.0 thanks to float imprecision. In theory it should always be < 1.0. If it ever >= 1.0, then bump the index we use and back it off. This is the point where we "skip" an entire sample in the input, because the phase part has accumulated so much error that we should really be closer to the next sample. or something like that ... */ if (fractional_phase_part >= 1.0) { fractional_phase_part -= 1.0; ++i; } // Cubically interpolate into the output buffer: keep this inlined for speed and rely on compiler // optimization to take care of the rest // shamelessly ripped from Steve Harris' swh-plugins (ladspa-util.h) output[outsample] = input[i] + 0.5f * fractional_phase_part * (input[i+1] - inm1 + fractional_phase_part * (4.0f * input[i+1] + 2.0f * inm1 - 5.0f * input[i] - input[i+2] + fractional_phase_part * (3.0f * (input[i] - input[i+1]) - inm1 + input[i+2]))); distance += _speed + acceleration; inm1 = input[i]; } i = floor(distance); phase[channel] = distance - floor(distance); } else { /* used to calculate play-distance with acceleration (silent roll) * (use same algorithm as real playback for identical rounding/floor'ing) */ for (framecnt_t outsample = 0; outsample < nframes; ++outsample) { distance += _speed + acceleration; } i = floor(distance); } return i; } framecnt_t CubicMidiInterpolation::distance (framecnt_t nframes, bool roll) { assert(phase.size() == 1); framecnt_t i = 0; double acceleration; double distance = 0.0; if (nframes < 3) { return nframes; } if (_speed != _target_speed) { acceleration = _target_speed - _speed; } else { acceleration = 0.0; } distance = phase[0]; for (framecnt_t outsample = 0; outsample < nframes; ++outsample) { distance += _speed + acceleration; } if (roll) { phase[0] = distance - floor(distance); } i = floor(distance); return i; }