/* * Copyright (C) 2017-2018 Paul Davis * Copyright (C) 2017-2019 Robin Gareus * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include #include "pbd/enumwriter.h" #include "pbd/memento_command.h" #include "pbd/playback_buffer.h" #include "ardour/amp.h" #include "ardour/audioengine.h" #include "ardour/audioplaylist.h" #include "ardour/audio_buffer.h" #include "ardour/butler.h" #include "ardour/debug.h" #include "ardour/disk_reader.h" #include "ardour/midi_ring_buffer.h" #include "ardour/midi_playlist.h" #include "ardour/midi_track.h" #include "ardour/pannable.h" #include "ardour/playlist.h" #include "ardour/playlist_factory.h" #include "ardour/session.h" #include "ardour/session_playlists.h" #include "pbd/i18n.h" using namespace ARDOUR; using namespace PBD; using namespace std; ARDOUR::samplecnt_t DiskReader::_chunk_samples = default_chunk_samples (); PBD::Signal0 DiskReader::Underrun; Sample* DiskReader::_sum_buffer = 0; Sample* DiskReader::_mixdown_buffer = 0; gain_t* DiskReader::_gain_buffer = 0; samplecnt_t DiskReader::midi_readahead = 4096; gint DiskReader::_no_disk_output (0); DiskReader::DiskReader (Session& s, string const & str, DiskIOProcessor::Flag f) : DiskIOProcessor (s, str, f) , overwrite_sample (0) , overwrite_queued (false) , _declick_amp (s.nominal_sample_rate ()) , _declick_offs (0) { file_sample[DataType::AUDIO] = 0; file_sample[DataType::MIDI] = 0; g_atomic_int_set (&_pending_overwrite, 0); } DiskReader::~DiskReader () { DEBUG_TRACE (DEBUG::Destruction, string_compose ("DiskReader %1 @ %2 deleted\n", _name, this)); } void DiskReader::ReaderChannelInfo::resize (samplecnt_t bufsize) { delete rbuf; rbuf = new PlaybackBuffer (bufsize); /* touch memory to lock it */ memset (rbuf->buffer(), 0, sizeof (Sample) * rbuf->bufsize()); } int DiskReader::add_channel_to (boost::shared_ptr c, uint32_t how_many) { while (how_many--) { c->push_back (new ReaderChannelInfo (_session.butler()->audio_diskstream_playback_buffer_size())); DEBUG_TRACE (DEBUG::DiskIO, string_compose ("%1: new reader channel, write space = %2 read = %3\n", name(), c->back()->rbuf->write_space(), c->back()->rbuf->read_space())); } return 0; } void DiskReader::allocate_working_buffers() { /* with varifill buffer refilling, we compute the read size in bytes (to optimize for disk i/o bandwidth) and then convert back into samples. These buffers need to reflect the maximum size we could use, which is 4MB reads, or 2M samples using 16 bit samples. */ _sum_buffer = new Sample[2*1048576]; _mixdown_buffer = new Sample[2*1048576]; _gain_buffer = new gain_t[2*1048576]; } void DiskReader::free_working_buffers() { delete [] _sum_buffer; delete [] _mixdown_buffer; delete [] _gain_buffer; _sum_buffer = 0; _mixdown_buffer = 0; _gain_buffer = 0; } samplecnt_t DiskReader::default_chunk_samples() { return 65536; } bool DiskReader::set_name (string const & str) { string my_name = X_("player:"); my_name += str; if (_name != my_name) { SessionObject::set_name (my_name); } return true; } XMLNode& DiskReader::state () { XMLNode& node (DiskIOProcessor::state ()); node.set_property(X_("type"), X_("diskreader")); return node; } int DiskReader::set_state (const XMLNode& node, int version) { if (DiskIOProcessor::set_state (node, version)) { return -1; } return 0; } void DiskReader::realtime_handle_transport_stopped () { } void DiskReader::realtime_locate () { } float DiskReader::buffer_load () const { /* Note: for MIDI it's not trivial to differentiate the following two cases: 1. The playback buffer is empty because the system has run out of time to fill it. 2. The playback buffer is empty because there is no more data on the playlist. If we use a simple buffer load computation, we will report that the MIDI diskstream cannot keep up when #2 happens, when in fact it can. Since MIDI data rates are so low compared to audio, just use the audio value here. */ boost::shared_ptr c = channels.reader(); if (c->empty ()) { /* no channels, so no buffers, so completely full and ready to playback, sir! */ return 1.0; } PBD::PlaybackBuffer* b = c->front()->rbuf; return (float) ((double) b->read_space() / (double) b->bufsize()); } void DiskReader::adjust_buffering () { boost::shared_ptr c = channels.reader(); for (ChannelList::iterator chan = c->begin(); chan != c->end(); ++chan) { (*chan)->resize (_session.butler()->audio_diskstream_playback_buffer_size()); } } void DiskReader::playlist_changed (const PropertyChange&) { playlist_modified (); } void DiskReader::playlist_modified () { if (!i_am_the_modifier && !overwrite_queued) { _session.request_overwrite_buffer (_route); overwrite_queued = true; } } int DiskReader::use_playlist (DataType dt, boost::shared_ptr playlist) { bool prior_playlist = false; if (_playlists[dt]) { prior_playlist = true; } if (DiskIOProcessor::use_playlist (dt, playlist)) { return -1; } /* don't do this if we've already asked for it *or* if we are setting up the diskstream for the very first time - the input changed handling will take care of the buffer refill. */ if (!overwrite_queued && (prior_playlist || _session.loading())) { _session.request_overwrite_buffer (_route); overwrite_queued = true; } return 0; } void DiskReader::run (BufferSet& bufs, samplepos_t start_sample, samplepos_t end_sample, double speed, pframes_t nframes, bool result_required) { uint32_t n; boost::shared_ptr c = channels.reader(); ChannelList::iterator chan; sampleoffset_t disk_samples_to_consume; MonitorState ms = _route->monitoring_state (); if (_active) { if (!_pending_active) { _active = false; return; } } else { if (_pending_active) { _active = true; } else { return; } } const bool declick_out = _session.declick_in_progress(); const gain_t target_gain = (declick_out || (speed == 0.0) || ((ms & MonitoringDisk) == 0)) ? 0.0 : 1.0; if (!_session.cfg ()->get_use_transport_fades ()) { _declick_amp.set_gain (target_gain); } if (declick_out && (ms == MonitoringDisk) && _declick_amp.gain () == target_gain) { /* no channels, or stopped. Don't accidentally pass any data * from disk into our outputs (e.g. via interpolation) */ return; } BufferSet& scratch_bufs (_session.get_scratch_buffers (bufs.count())); const bool still_locating = _session.global_locate_pending() || pending_overwrite (); assert (speed == -1 || speed == 0 || speed == 1); if (speed == 0) { disk_samples_to_consume = 0; } else { disk_samples_to_consume = nframes; } if (c->empty()) { /* do nothing with audio */ goto midi; } if (_declick_amp.gain () != target_gain && target_gain == 0) { /* fade-out */ #if 0 printf ("DR fade-out speed=%.1f gain=%.3f off=%ld start=%ld playpos=%ld (%s)\n", speed, _declick_amp.gain (), _declick_offs, start_sample, playback_sample, owner()->name().c_str()); #endif ms = MonitorState (ms | MonitoringDisk); assert (result_required); result_required = true; } else { _declick_offs = 0; } if (!result_required || ((ms & MonitoringDisk) == 0) || still_locating || _no_disk_output) { /* no need for actual disk data, just advance read pointer and return */ if (!still_locating || _no_disk_output) { for (ChannelList::iterator chan = c->begin(); chan != c->end(); ++chan) { (*chan)->rbuf->increment_read_ptr (disk_samples_to_consume); } } /* if monitoring disk but locating put silence in the buffers */ if ((_no_disk_output || still_locating) && (ms == MonitoringDisk)) { bufs.silence (nframes, 0); } } else { /* we need audio data from disk */ size_t n_buffers = bufs.count().n_audio(); size_t n_chans = c->size(); gain_t scaling; if (n_chans > n_buffers) { scaling = ((float) n_buffers) / n_chans; } else { scaling = 1.0; } for (n = 0, chan = c->begin(); chan != c->end(); ++chan, ++n) { ChannelInfo* chaninfo (*chan); AudioBuffer& output (bufs.get_audio (n % n_buffers)); AudioBuffer& disk_buf ((ms & MonitoringInput) ? scratch_bufs.get_audio(n) : output); if (start_sample != playback_sample && target_gain != 0) { if (can_internal_playback_seek (start_sample - playback_sample)) { internal_playback_seek (start_sample - playback_sample); } else { disk_samples_to_consume = 0; /* will force an underrun below */ } } if (!declick_out) { const samplecnt_t total = chaninfo->rbuf->read (disk_buf.data(), disk_samples_to_consume); if (disk_samples_to_consume > total) { cerr << _name << " Need " << total << " have only " << disk_samples_to_consume << endl; cerr << "underrun for " << _name << endl; DEBUG_TRACE (DEBUG::Butler, string_compose ("%1 underrun in %2, total space = %3\n", DEBUG_THREAD_SELF, name(), total)); Underrun (); return; } } else if (_declick_amp.gain () != target_gain) { assert (target_gain == 0); const samplecnt_t total = chaninfo->rbuf->read (disk_buf.data(), nframes, false, _declick_offs); _declick_offs += total; } _declick_amp.apply_gain (disk_buf, nframes, target_gain); Amp::apply_simple_gain (disk_buf, nframes, scaling); if (ms & MonitoringInput) { /* mix the disk signal into the input signal (already in bufs) */ mix_buffers_no_gain (output.data(), disk_buf.data(), nframes); } } } /* MIDI data handling */ midi: if (!declick_in_progress() && bufs.count().n_midi() && _midi_buf) { MidiBuffer* dst; if (_no_disk_output) { dst = &scratch_bufs.get_midi(0); } else { dst = &bufs.get_midi (0); } if ((ms & MonitoringDisk) && !still_locating) { get_midi_playback (*dst, start_sample, end_sample, ms, scratch_bufs, speed, disk_samples_to_consume); } } if (!still_locating) { bool butler_required = false; if (speed < 0.0) { playback_sample -= disk_samples_to_consume; } else { playback_sample += disk_samples_to_consume; } if (_playlists[DataType::AUDIO]) { if (!c->empty()) { if (_slaved) { if (c->front()->rbuf->write_space() >= c->front()->rbuf->bufsize() / 2) { DEBUG_TRACE (DEBUG::Butler, string_compose ("%1: slaved, write space = %2 of %3\n", name(), c->front()->rbuf->write_space(), c->front()->rbuf->bufsize())); butler_required = true; } } else { if ((samplecnt_t) c->front()->rbuf->write_space() >= _chunk_samples) { DEBUG_TRACE (DEBUG::Butler, string_compose ("%1: write space = %2 of %3\n", name(), c->front()->rbuf->write_space(), _chunk_samples)); butler_required = true; } } } } if (_playlists[DataType::MIDI]) { /* MIDI butler needed part */ uint32_t samples_read = g_atomic_int_get(const_cast(&_samples_read_from_ringbuffer)); uint32_t samples_written = g_atomic_int_get(const_cast(&_samples_written_to_ringbuffer)); /* cerr << name() << " MDS written: " << samples_written << " - read: " << samples_read << " = " << samples_written - samples_read << " + " << disk_samples_to_consume << " < " << midi_readahead << " = " << need_butler << ")" << endl; */ /* samples_read will generally be less than samples_written, but * immediately after an overwrite, we can end up having read some data * before we've written any. we don't need to trip an assert() on this, * but we do need to check so that the decision on whether or not we * need the butler is done correctly. */ /* furthermore.. * * Doing heavy GUI operations[1] can stall also the butler. * The RT-thread meanwhile will happily continue and * ‘samples_read’ (from buffer to output) will become larger * than ‘samples_written’ (from disk to buffer). * * The disk-stream is now behind.. * * In those cases the butler needs to be summed to refill the buffer (done now) * AND we need to skip (samples_read - samples_written). ie remove old events * before playback_sample from the rinbuffer. * * [1] one way to do so is described at #6170. * For me just popping up the context-menu on a MIDI-track header * of a track with a large (think beethoven :) midi-region also did the * trick. The playhead stalls for 2 or 3 sec, until the context-menu shows. * * In both cases the root cause is that redrawing MIDI regions on the GUI is still very slow * and can stall */ if (samples_read <= samples_written) { if ((samples_written - samples_read) + disk_samples_to_consume < midi_readahead) { butler_required = true; } } else { butler_required = true; } } _need_butler = butler_required; } // DEBUG_TRACE (DEBUG::Butler, string_compose ("%1 reader run, needs butler = %2\n", name(), _need_butler)); } bool DiskReader::declick_in_progress () const { return _declick_amp.gain() != 0; // declick-out } bool DiskReader::pending_overwrite () const { return g_atomic_int_get (&_pending_overwrite) != 0; } void DiskReader::set_pending_overwrite () { /* called from audio thread, so we can use the read ptr and playback sample as we wish */ assert (!pending_overwrite ()); overwrite_sample = playback_sample; boost::shared_ptr c = channels.reader (); for (ChannelList::iterator chan = c->begin(); chan != c->end(); ++chan) { (*chan)->rbuf->read_flush (); } g_atomic_int_set (&_pending_overwrite, 1); } bool DiskReader::overwrite_existing_buffers () { /* called from butler thread */ assert (pending_overwrite ()); overwrite_queued = false; DEBUG_TRACE (DEBUG::DiskIO, string_compose ("%1 overwriting existing buffers at %2\n", overwrite_sample)); boost::shared_ptr c = channels.reader(); if (!c->empty ()) { /* AUDIO */ const bool reversed = _session.transport_speed() < 0.0f; /* assume all are the same size */ samplecnt_t size = c->front()->rbuf->write_space (); assert (size > 0); boost::scoped_array sum_buffer (new Sample[size]); boost::scoped_array mixdown_buffer (new Sample[size]); boost::scoped_array gain_buffer (new float[size]); /* reduce size so that we can fill the buffer correctly (ringbuffers * can only handle size-1, otherwise they appear to be empty) */ size--; uint32_t n=0; for (ChannelList::iterator chan = c->begin(); chan != c->end(); ++chan, ++n) { samplepos_t start = overwrite_sample; samplecnt_t to_read = size; if (audio_read ((*chan)->rbuf, sum_buffer.get(), mixdown_buffer.get(), gain_buffer.get(), start, to_read, n, reversed)) { error << string_compose(_("DiskReader %1: when refilling, cannot read %2 from playlist at sample %3"), id(), size, overwrite_sample) << endmsg; goto midi; } } } midi: if (_midi_buf && _playlists[DataType::MIDI]) { /* Clear the playback buffer contents. This is safe as long as the butler thread is suspended, which it should be. */ _midi_buf->reset (); _midi_buf->reset_tracker (); g_atomic_int_set (&_samples_read_from_ringbuffer, 0); g_atomic_int_set (&_samples_written_to_ringbuffer, 0); /* Resolve all currently active notes in the playlist. This is more aggressive than it needs to be: ideally we would only resolve what is absolutely necessary, but this seems difficult and/or impossible without having the old data or knowing what change caused the overwrite. */ midi_playlist()->resolve_note_trackers (*_midi_buf, overwrite_sample); midi_read (overwrite_sample, _chunk_samples, false); file_sample[DataType::MIDI] = overwrite_sample; // overwrite_sample was adjusted by ::midi_read() to the new position } g_atomic_int_set (&_pending_overwrite, 0); return true; } int DiskReader::seek (samplepos_t sample, bool complete_refill) { /* called via non_realtime_locate() from butler thread */ uint32_t n; int ret = -1; ChannelList::iterator chan; boost::shared_ptr c = channels.reader(); #ifndef NDEBUG if (_declick_amp.gain() != 0) { /* this should not happen. new transport should postponse seeking * until de-click is complete */ printf ("LOCATE WITHOUT DECLICK (gain=%f) at %ld seek-to %ld\n", _declick_amp.gain (), playback_sample, sample); //return -1; } if (sample == playback_sample && !complete_refill) { return 0; // XXX double-check this } #endif g_atomic_int_set (&_pending_overwrite, 0); DEBUG_TRACE (DEBUG::DiskIO, string_compose ("DiskReader::seek %s %ld -> %ld refill=%d\n", owner()->name().c_str(), playback_sample, sample, complete_refill)); const samplecnt_t distance = sample - playback_sample; if (can_internal_playback_seek (distance)) { internal_playback_seek (distance); return 0; } for (n = 0, chan = c->begin(); chan != c->end(); ++chan, ++n) { (*chan)->rbuf->reset (); } if (g_atomic_int_get (&_samples_read_from_ringbuffer) == 0) { /* we haven't read anything since the last seek, so flush all note trackers to prevent wierdness */ reset_tracker (); } if (_midi_buf) { _midi_buf->reset(); } g_atomic_int_set(&_samples_read_from_ringbuffer, 0); g_atomic_int_set(&_samples_written_to_ringbuffer, 0); playback_sample = sample; file_sample[DataType::AUDIO] = sample; file_sample[DataType::MIDI] = sample; if (complete_refill) { /* call _do_refill() to refill the entire buffer, using the largest reads possible. */ while ((ret = do_refill_with_alloc (false)) > 0) ; } else { /* call _do_refill() to refill just one chunk, and then return. */ ret = do_refill_with_alloc (true); } return ret; } bool DiskReader::can_internal_playback_seek (sampleoffset_t distance) { /* 1. Audio */ ChannelList::iterator chan; boost::shared_ptr c = channels.reader(); for (chan = c->begin(); chan != c->end(); ++chan) { if (!(*chan)->rbuf->can_seek (distance)) { return false; } } if (distance < 0) { return true; // XXX TODO un-seek MIDI } /* 2. MIDI */ uint32_t samples_read = g_atomic_int_get(&_samples_read_from_ringbuffer); uint32_t samples_written = g_atomic_int_get(&_samples_written_to_ringbuffer); return ((samples_written - samples_read) < distance); } void DiskReader::internal_playback_seek (sampleoffset_t distance) { if (distance == 0) { return; } sampleoffset_t off = distance; ChannelList::iterator chan; boost::shared_ptr c = channels.reader(); for (chan = c->begin(); chan != c->end(); ++chan) { if (distance < 0) { off = 0 - (sampleoffset_t) (*chan)->rbuf->decrement_read_ptr (::llabs (distance)); } else { off = (*chan)->rbuf->increment_read_ptr (distance); } } playback_sample += off; } static void swap_by_ptr (Sample *first, Sample *last) { while (first < last) { Sample tmp = *first; *first++ = *last; *last-- = tmp; } } /** Read some data for 1 channel from our playlist into a buffer. * @param buf Buffer to write to. * @param start Session sample to start reading from; updated to where we end up * after the read. * @param cnt Count of samples to read. * @param reversed true if we are running backwards, otherwise false. */ int DiskReader::audio_read (PBD::PlaybackBuffer*rb, Sample* sum_buffer, Sample* mixdown_buffer, float* gain_buffer, samplepos_t& start, samplecnt_t cnt, int channel, bool reversed) { samplecnt_t this_read = 0; bool reloop = false; samplepos_t loop_end = 0; samplepos_t loop_start = 0; Location *loc = 0; if (!_playlists[DataType::AUDIO]) { rb->write_zero (cnt); return 0; } /* XXX we don't currently play loops in reverse. not sure why */ if (!reversed) { samplecnt_t loop_length = 0; /* Make the use of a Location atomic for this read operation. Note: Locations don't get deleted, so all we care about when I say "atomic" is that we are always pointing to the same one and using a start/length values obtained just once. */ if ((loc = _loop_location) != 0) { loop_start = loc->start(); loop_end = loc->end(); loop_length = loop_end - loop_start; } /* if we are looping, ensure that the first sample we read is at the correct position within the loop. */ if (loc && start >= loop_end) { start = loop_start + ((start - loop_start) % loop_length); } } if (reversed) { start -= cnt; } /* We need this while loop in case we hit a loop boundary, in which case our read from the playlist must be split into more than one section. */ while (cnt) { /* take any loop into account. we can't read past the end of the loop. */ if (loc && (loop_end - start < cnt)) { this_read = loop_end - start; reloop = true; } else { reloop = false; this_read = cnt; } if (this_read == 0) { break; } this_read = min (cnt, this_read); if (audio_playlist()->read (sum_buffer, mixdown_buffer, gain_buffer, start, this_read, channel) != this_read) { error << string_compose(_("DiskReader %1: cannot read %2 from playlist at sample %3"), id(), this_read, start) << endmsg; return -1; } if (reversed) { swap_by_ptr (sum_buffer, sum_buffer + this_read - 1); } else { /* if we read to the end of the loop, go back to the beginning */ if (reloop) { start = loop_start; } else { start += this_read; } } if (rb->write (sum_buffer, this_read) != this_read) { cerr << owner()->name() << " Ringbuffer Write overrun" << endl; } cnt -= this_read; } return 0; } int DiskReader::_do_refill_with_alloc (bool partial_fill) { /* We limit disk reads to at most 4MB chunks, which with floating point samples would be 1M samples. But we might use 16 or 14 bit samples, in which case 4MB is more samples than that. Therefore size this for the smallest sample value .. 4MB = 2M samples (16 bit). */ { boost::scoped_array sum_buf (new Sample[2*1048576]); boost::scoped_array mix_buf (new Sample[2*1048576]); boost::scoped_array gain_buf (new float[2*1048576]); int ret = refill_audio (sum_buf.get(), mix_buf.get(), gain_buf.get(), (partial_fill ? _chunk_samples : 0)); if (ret) { return ret; } } return refill_midi (); } int DiskReader::refill (Sample* sum_buffer, Sample* mixdown_buffer, float* gain_buffer, samplecnt_t fill_level) { int ret = refill_audio (sum_buffer, mixdown_buffer, gain_buffer, fill_level); if (ret) { return ret; } return refill_midi (); } /** Get some more data from disk and put it in our channels' bufs, * if there is suitable space in them. * * If fill_level is non-zero, then we will refill the buffer so that there is * still at least fill_level samples of space left to be filled. This is used * after locates so that we do not need to wait to fill the entire buffer. * */ int DiskReader::refill_audio (Sample* sum_buffer, Sample* mixdown_buffer, float* gain_buffer, samplecnt_t fill_level) { /* do not read from disk while session is marked as Loading, to avoid useless redundant I/O. */ if (_session.loading()) { return 0; } int32_t ret = 0; bool const reversed = _session.transport_speed() < 0.0f; samplecnt_t zero_fill; uint32_t chan_n; ChannelList::iterator i; boost::shared_ptr c = channels.reader(); if (c->empty()) { return 0; } assert(mixdown_buffer); assert(gain_buffer); samplecnt_t total_space = c->front()->rbuf->write_space(); if (total_space == 0) { DEBUG_TRACE (DEBUG::DiskIO, string_compose ("%1: no space to refill\n", name())); /* nowhere to write to */ return 0; } if (fill_level) { if (fill_level < total_space) { total_space -= fill_level; } else { /* we can't do anything with it */ fill_level = 0; } } /* if we're running close to normal speed and there isn't enough space to do disk_read_chunk_samples of I/O, then don't bother. at higher speeds, just do it because the sync between butler and audio thread may not be good enough. Note: it is a design assumption that disk_read_chunk_samples is smaller than the playback buffer size, so this check should never trip when the playback buffer is empty. */ DEBUG_TRACE (DEBUG::DiskIO, string_compose ("%1: space to refill %2 vs. chunk %3 (speed = %4)\n", name(), total_space, _chunk_samples, _session.transport_speed())); if ((total_space < _chunk_samples) && fabs (_session.transport_speed()) < 2.0f) { return 0; } /* when slaved, don't try to get too close to the read pointer. this leaves space for the buffer reversal to have something useful to work with. */ if (_slaved && total_space < (samplecnt_t) (c->front()->rbuf->bufsize() / 2)) { DEBUG_TRACE (DEBUG::DiskIO, string_compose ("%1: not enough to refill while slaved\n", this)); return 0; } samplepos_t ffa = file_sample[DataType::AUDIO]; if (reversed) { if (ffa == 0) { /* at start: nothing to do but fill with silence */ for (chan_n = 0, i = c->begin(); i != c->end(); ++i, ++chan_n) { ChannelInfo* chan (*i); chan->rbuf->write_zero (chan->rbuf->write_space ()); } return 0; } if (ffa < total_space) { /* too close to the start: read what we can, and then zero fill the rest */ zero_fill = total_space - ffa; total_space = ffa; } else { zero_fill = 0; } } else { if (ffa == max_samplepos) { /* at end: nothing to do but fill with silence */ for (chan_n = 0, i = c->begin(); i != c->end(); ++i, ++chan_n) { ChannelInfo* chan (*i); chan->rbuf->write_zero (chan->rbuf->write_space ()); } return 0; } if (ffa > max_samplepos - total_space) { /* to close to the end: read what we can, and zero fill the rest */ zero_fill = total_space - (max_samplepos - ffa); total_space = max_samplepos - ffa; } else { zero_fill = 0; } } /* total_space is in samples. We want to optimize read sizes in various sizes using bytes */ const size_t bits_per_sample = format_data_width (_session.config.get_native_file_data_format()); size_t total_bytes = total_space * bits_per_sample / 8; /* chunk size range is 256kB to 4MB. Bigger is faster in terms of MB/sec, but bigger chunk size always takes longer */ size_t byte_size_for_read = max ((size_t) (256 * 1024), min ((size_t) (4 * 1048576), total_bytes)); /* find nearest (lower) multiple of 16384 */ byte_size_for_read = (byte_size_for_read / 16384) * 16384; /* now back to samples */ samplecnt_t samples_to_read = byte_size_for_read / (bits_per_sample / 8); DEBUG_TRACE (DEBUG::DiskIO, string_compose ("%1: will refill %2 channels with %3 samples\n", name(), c->size(), total_space)); samplepos_t file_sample_tmp = ffa; for (chan_n = 0, i = c->begin(); i != c->end(); ++i, ++chan_n) { ChannelInfo* chan (*i); file_sample_tmp = ffa; samplecnt_t ts = total_space; samplecnt_t to_read = min (ts, (samplecnt_t) chan->rbuf->write_space ()); to_read = min (to_read, samples_to_read); assert (to_read >= 0); // cerr << owner()->name() << " to-read: " << to_read << endl; if (to_read) { if (audio_read (chan->rbuf, sum_buffer, mixdown_buffer, gain_buffer, file_sample_tmp, to_read, chan_n, reversed)) { error << string_compose(_("DiskReader %1: when refilling, cannot read %2 from playlist at sample %3"), id(), to_read, ffa) << endmsg; ret = -1; goto out; } } if (zero_fill) { /* not sure if action is needed, * we'll later hit the "to close to the end" case */ //chan->rbuf->write_zero (zero_fill); } } // elapsed = g_get_monotonic_time () - before; // cerr << '\t' << name() << ": bandwidth = " << (byte_size_for_read / 1048576.0) / (elapsed/1000000.0) << "MB/sec\n"; file_sample[DataType::AUDIO] = file_sample_tmp; assert (file_sample[DataType::AUDIO] >= 0); ret = ((total_space - samples_to_read) > _chunk_samples); out: return ret; } void DiskReader::playlist_ranges_moved (list< Evoral::RangeMove > const & movements_samples, bool from_undo_or_shift) { /* If we're coming from an undo, it will have handled * automation undo (it must, since automation-follows-regions * can lose automation data). Hence we can do nothing here. * * Likewise when shifting regions (insert/remove time) * automation is taken care of separately (busses with * automation have no disk-reader). */ if (from_undo_or_shift) { return; } if (!_route || Config->get_automation_follows_regions () == false) { return; } list< Evoral::RangeMove > movements; for (list< Evoral::RangeMove >::const_iterator i = movements_samples.begin(); i != movements_samples.end(); ++i) { movements.push_back(Evoral::RangeMove(i->from, i->length, i->to)); } /* move panner automation */ boost::shared_ptr pannable = _route->pannable(); Evoral::ControlSet::Controls& c (pannable->controls()); for (Evoral::ControlSet::Controls::iterator ci = c.begin(); ci != c.end(); ++ci) { boost::shared_ptr ac = boost::dynamic_pointer_cast(ci->second); if (!ac) { continue; } boost::shared_ptr alist = ac->alist(); if (!alist->size()) { continue; } XMLNode & before = alist->get_state (); bool const things_moved = alist->move_ranges (movements); if (things_moved) { _session.add_command (new MementoCommand ( *alist.get(), &before, &alist->get_state ())); } } /* move processor automation */ _route->foreach_processor (boost::bind (&DiskReader::move_processor_automation, this, _1, movements_samples)); } void DiskReader::move_processor_automation (boost::weak_ptr p, list< Evoral::RangeMove > const & movements_samples) { boost::shared_ptr processor (p.lock ()); if (!processor) { return; } list< Evoral::RangeMove > movements; for (list< Evoral::RangeMove >::const_iterator i = movements_samples.begin(); i != movements_samples.end(); ++i) { movements.push_back(Evoral::RangeMove(i->from, i->length, i->to)); } set const a = processor->what_can_be_automated (); for (set::const_iterator i = a.begin (); i != a.end (); ++i) { boost::shared_ptr al = processor->automation_control(*i)->alist(); if (!al->size()) { continue; } XMLNode & before = al->get_state (); bool const things_moved = al->move_ranges (movements); if (things_moved) { _session.add_command ( new MementoCommand ( *al.get(), &before, &al->get_state () ) ); } } } void DiskReader::reset_tracker () { if (_midi_buf) { _midi_buf->reset_tracker (); } boost::shared_ptr mp (midi_playlist()); if (mp) { mp->reset_note_trackers (); } } void DiskReader::resolve_tracker (Evoral::EventSink& buffer, samplepos_t time) { if (_midi_buf) { _midi_buf->resolve_tracker(buffer, time); } boost::shared_ptr mp (midi_playlist()); if (mp) { mp->reset_note_trackers (); } } /** Writes playback events from playback_sample for nframes to dst, translating time stamps * so that an event at playback_sample has time = 0 */ void DiskReader::get_midi_playback (MidiBuffer& dst, samplepos_t start_sample, samplepos_t end_sample, MonitorState ms, BufferSet& scratch_bufs, double speed, samplecnt_t disk_samples_to_consume) { MidiBuffer* target; samplepos_t nframes = ::llabs (end_sample - start_sample); assert (_midi_buf); if ((ms & MonitoringInput) == 0) { /* Route::process_output_buffers() clears the buffer as-needed */ target = &dst; } else { target = &scratch_bufs.get_midi (0); } if (ms & MonitoringDisk) { /* disk data needed */ Location* loc = _loop_location; DEBUG_TRACE (DEBUG::MidiDiskIO, string_compose ( "%1 MDS pre-read read %8 offset = %9 @ %4..%5 from %2 write to %3, LOOPED ? %6 .. %7\n", _name, _midi_buf->get_read_ptr(), _midi_buf->get_write_ptr(), start_sample, end_sample, (loc ? loc->start() : -1), (loc ? loc->end() : -1), nframes, Port::port_offset())); //cerr << "======== PRE ========\n"; //_midi_buf->dump (cerr); //cerr << "----------------\n"; size_t events_read = 0; if (loc) { samplepos_t effective_start; Evoral::Range loop_range (loc->start(), loc->end() - 1); effective_start = loop_range.squish (start_sample); DEBUG_TRACE (DEBUG::MidiDiskIO, string_compose ("looped, effective start adjusted to %1\n", effective_start)); if (effective_start == loc->start()) { /* We need to turn off notes that may extend beyond the loop end. */ _midi_buf->resolve_tracker (*target, 0); } /* for split-cycles we need to offset the events */ if (loc->end() >= effective_start && loc->end() < effective_start + nframes) { /* end of loop is within the range we are reading, so split the read in two, and lie about the location for the 2nd read */ samplecnt_t first, second; first = loc->end() - effective_start; second = nframes - first; DEBUG_TRACE (DEBUG::MidiDiskIO, string_compose ("loop read for eff %1 end %2: %3 and %4, cycle offset %5\n", effective_start, loc->end(), first, second)); if (first) { DEBUG_TRACE (DEBUG::MidiDiskIO, string_compose ("loop read #1, from %1 for %2\n", effective_start, first)); events_read = _midi_buf->read (*target, effective_start, first); } if (second) { DEBUG_TRACE (DEBUG::MidiDiskIO, string_compose ("loop read #2, from %1 for %2\n", loc->start(), second)); events_read += _midi_buf->read (*target, loc->start(), second); } } else { DEBUG_TRACE (DEBUG::MidiDiskIO, string_compose ("loop read #3, adjusted start as %1 for %2\n", effective_start, nframes)); events_read = _midi_buf->read (*target, effective_start, effective_start + nframes); } } else { const size_t n_skipped = _midi_buf->skip_to (start_sample); if (n_skipped > 0) { warning << string_compose(_("MidiDiskstream %1: skipped %2 events, possible underflow"), id(), n_skipped) << endmsg; } DEBUG_TRACE (DEBUG::MidiDiskIO, string_compose ("playback buffer read, from %1 to %2 (%3)", start_sample, end_sample, nframes)); events_read = _midi_buf->read (*target, start_sample, end_sample, Port::port_offset ()); } DEBUG_TRACE (DEBUG::MidiDiskIO, string_compose ( "%1 MDS events read %2 range %3 .. %4 rspace %5 wspace %6 r@%7 w@%8\n", _name, events_read, playback_sample, playback_sample + nframes, _midi_buf->read_space(), _midi_buf->write_space(), _midi_buf->get_read_ptr(), _midi_buf->get_write_ptr())); } g_atomic_int_add (&_samples_read_from_ringbuffer, nframes); if (!_no_disk_output && (ms & MonitoringInput)) { dst.merge_from (*target, nframes); } #if 0 if (!target->empty ()) { cerr << "======== MIDI OUT ========\n"; for (MidiBuffer::iterator i = target->begin(); i != target->end(); ++i) { const Evoral::Event ev (*i, false); cerr << "MIDI EVENT (from disk) @ " << ev.time(); for (size_t xx = 0; xx < ev.size(); ++xx) { cerr << ' ' << hex << (int) ev.buffer()[xx]; } cerr << dec << endl; } cerr << "----------------\n"; } #endif #if 0 cerr << "======== MIDI Disk Buffer ========\n"; _midi_buf->dump (cerr); cerr << "----------------\n"; #endif } /** @a start is set to the new sample position (TIME) read up to */ int DiskReader::midi_read (samplepos_t& start, samplecnt_t dur, bool reversed) { samplecnt_t this_read = 0; samplepos_t loop_end = 0; samplepos_t loop_start = 0; samplecnt_t loop_length = 0; Location* loc = _loop_location; samplepos_t effective_start = start; Evoral::Range* loop_range (0); assert(_midi_buf); DEBUG_TRACE (DEBUG::MidiDiskIO, string_compose ("MDS::midi_read @ %1 cnt %2\n", start, dur)); boost::shared_ptr mt = boost::dynamic_pointer_cast(_route); MidiChannelFilter* filter = mt ? &mt->playback_filter() : 0; sampleoffset_t loop_offset = 0; if (!reversed && loc) { get_location_times (loc, &loop_start, &loop_end, &loop_length); } while (dur) { /* take any loop into account. we can't read past the end of the loop. */ if (loc && !reversed) { if (!loop_range) { loop_range = new Evoral::Range (loop_start, loop_end-1); // inclusive semantics require -1 } /* if we are (seamlessly) looping, ensure that the first sample we read is at the correct position within the loop. */ effective_start = loop_range->squish (effective_start); if ((loop_end - effective_start) <= dur) { /* too close to end of loop to read "dur", so shorten it. */ this_read = loop_end - effective_start; } else { this_read = dur; } } else { this_read = dur; } if (this_read == 0) { break; } this_read = min (dur,this_read); DEBUG_TRACE (DEBUG::MidiDiskIO, string_compose ("MDS ::read at %1 for %2 loffset %3\n", effective_start, this_read, loop_offset)); if (midi_playlist()->read (*_midi_buf, effective_start, this_read, loop_range, 0, filter) != this_read) { error << string_compose( _("MidiDiskstream %1: cannot read %2 from playlist at sample %3"), id(), this_read, start) << endmsg; return -1; } g_atomic_int_add (&_samples_written_to_ringbuffer, this_read); if (reversed) { // Swap note ons with note offs here. etc? // Fully reversing MIDI requires look-ahead (well, behind) to find previous // CC values etc. hard. } else { /* adjust passed-by-reference argument (note: this is monotonic and does not reflect looping. */ start += this_read; /* similarly adjust effective_start, but this may be readjusted for seamless looping as we continue around the loop. */ effective_start += this_read; } dur -= this_read; } return 0; } int DiskReader::refill_midi () { if (!_playlists[DataType::MIDI] || !_midi_buf) { return 0; } const size_t write_space = _midi_buf->write_space(); const bool reversed = _session.transport_speed() < 0.0f; DEBUG_TRACE (DEBUG::DiskIO, string_compose ("MIDI refill, write space = %1 file sample = %2\n", write_space, file_sample[DataType::MIDI])); /* no space to write */ if (write_space == 0) { return 0; } if (reversed) { return 0; } /* at end: nothing to do */ samplepos_t ffm = file_sample[DataType::MIDI]; if (ffm == max_samplepos) { return 0; } int ret = 0; const uint32_t samples_read = g_atomic_int_get (&_samples_read_from_ringbuffer); const uint32_t samples_written = g_atomic_int_get (&_samples_written_to_ringbuffer); if ((samples_read < samples_written) && (samples_written - samples_read) >= midi_readahead) { return 0; } samplecnt_t to_read = midi_readahead - ((samplecnt_t)samples_written - (samplecnt_t)samples_read); to_read = min (to_read, (samplecnt_t) (max_samplepos - ffm)); to_read = min (to_read, (samplecnt_t) write_space); if (midi_read (ffm, to_read, reversed)) { ret = -1; } file_sample[DataType::MIDI] = ffm; return ret; } void DiskReader::dec_no_disk_output () { /* this is called unconditionally when things happen that ought to end a period of "no disk output". It's OK for that to happen when there was no corresponding call to ::inc_no_disk_output(), but we must stop the value from becoming negative. */ do { gint v = g_atomic_int_get (&_no_disk_output); if (v > 0) { if (g_atomic_int_compare_and_exchange (&_no_disk_output, v, v - 1)) { break; } } else { break; } } while (true); } DiskReader::DeclickAmp::DeclickAmp (samplecnt_t sample_rate) { _a = 4550.f / (gain_t)sample_rate; _l = -log1p (_a); _g = 0; } void DiskReader::DeclickAmp::apply_gain (AudioBuffer& buf, samplecnt_t n_samples, const float target) { if (n_samples == 0) { return; } float g = _g; if (g == target) { Amp::apply_simple_gain (buf, n_samples, target, 0); return; } const float a = _a; Sample* const buffer = buf.data (); const int max_nproc = 16; uint32_t remain = n_samples; uint32_t offset = 0; while (remain > 0) { uint32_t n_proc = remain > max_nproc ? max_nproc : remain; for (uint32_t i = 0; i < n_proc; ++i) { buffer[offset + i] *= g; } #if 1 g += a * (target - g); #else /* accurate exponential fade */ if (n_proc == max_nproc) { g += a * (target - g); } else { g = target - (target - g) * expf (_l * n_proc / max_nproc); } #endif remain -= n_proc; offset += n_proc; } if (fabsf (g - target) < /* GAIN_COEFF_DELTA */ 1e-5) { _g = target; } else { _g = g; } }