/* Copyright (C) 2001-2003 Paul Davis Contains ideas derived from "Constrained Cubic Spline Interpolation" by CJC Kruger (www.korf.co.uk/spline.pdf). This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include #include #include #include "ardour/curve.h" #include "i18n.h" using namespace std; using namespace ARDOUR; using namespace sigc; using namespace PBD; Curve::Curve (double minv, double maxv, double canv, bool nostate) : AutomationList (canv) { min_yval = minv; max_yval = maxv; } Curve::Curve (const Curve& other) : AutomationList (other) { min_yval = other.min_yval; max_yval = other.max_yval; } Curve::Curve (const Curve& other, double start, double end) : AutomationList (other, start, end) { min_yval = other.min_yval; max_yval = other.max_yval; } Curve::Curve (const XMLNode& node) : AutomationList (node) { } Curve::~Curve () { } void Curve::solve () { uint64_t npoints; if (!_dirty) { return; } if ((npoints = events.size()) > 2) { /* Compute coefficients needed to efficiently compute a constrained spline curve. See "Constrained Cubic Spline Interpolation" by CJC Kruger (www.korf.co.uk/spline.pdf) for more details. */ double x[npoints]; double y[npoints]; uint64_t i; AutomationEventList::iterator xx; for (i = 0, xx = events.begin(); xx != events.end(); ++xx, ++i) { x[i] = (double) (*xx)->when; y[i] = (double) (*xx)->value; } double lp0, lp1, fpone; lp0 =(x[1] - x[0])/(y[1] - y[0]); lp1 = (x[2] - x[1])/(y[2] - y[1]); if (lp0*lp1 < 0) { fpone = 0; } else { fpone = 2 / (lp1 + lp0); } double fplast = 0; for (i = 0, xx = events.begin(); xx != events.end(); ++xx, ++i) { CurvePoint* cp = dynamic_cast(*xx); if (cp == 0) { fatal << _("programming error: ") << X_("non-CurvePoint event found in event list for a Curve") << endmsg; /*NOTREACHED*/ } double xdelta; /* gcc is wrong about possible uninitialized use */ double xdelta2; /* ditto */ double ydelta; /* ditto */ double fppL, fppR; double fpi; if (i > 0) { xdelta = x[i] - x[i-1]; xdelta2 = xdelta * xdelta; ydelta = y[i] - y[i-1]; } /* compute (constrained) first derivatives */ if (i == 0) { /* first segment */ fplast = ((3 * (y[1] - y[0]) / (2 * (x[1] - x[0]))) - (fpone * 0.5)); /* we don't store coefficients for i = 0 */ continue; } else if (i == npoints - 1) { /* last segment */ fpi = ((3 * ydelta) / (2 * xdelta)) - (fplast * 0.5); } else { /* all other segments */ double slope_before = ((x[i+1] - x[i]) / (y[i+1] - y[i])); double slope_after = (xdelta / ydelta); if (slope_after * slope_before < 0.0) { /* slope changed sign */ fpi = 0.0; } else { fpi = 2 / (slope_before + slope_after); } } /* compute second derivative for either side of control point `i' */ fppL = (((-2 * (fpi + (2 * fplast))) / (xdelta))) + ((6 * ydelta) / xdelta2); fppR = (2 * ((2 * fpi) + fplast) / xdelta) - ((6 * ydelta) / xdelta2); /* compute polynomial coefficients */ double b, c, d; d = (fppR - fppL) / (6 * xdelta); c = ((x[i] * fppL) - (x[i-1] * fppR))/(2 * xdelta); double xim12, xim13; double xi2, xi3; xim12 = x[i-1] * x[i-1]; /* "x[i-1] squared" */ xim13 = xim12 * x[i-1]; /* "x[i-1] cubed" */ xi2 = x[i] * x[i]; /* "x[i] squared" */ xi3 = xi2 * x[i]; /* "x[i] cubed" */ b = (ydelta - (c * (xi2 - xim12)) - (d * (xi3 - xim13))) / xdelta; /* store */ cp->coeff[0] = y[i-1] - (b * x[i-1]) - (c * xim12) - (d * xim13); cp->coeff[1] = b; cp->coeff[2] = c; cp->coeff[3] = d; fplast = fpi; } } _dirty = false; } bool Curve::rt_safe_get_vector (double x0, double x1, float *vec, int64_t veclen) { Glib::Mutex::Lock lm (lock, Glib::TRY_LOCK); if (!lm.locked()) { return false; } else { _get_vector (x0, x1, vec, veclen); return true; } } void Curve::get_vector (double x0, double x1, float *vec, int64_t veclen) { Glib::Mutex::Lock lm (lock); _get_vector (x0, x1, vec, veclen); } void Curve::_get_vector (double x0, double x1, float *vec, int64_t veclen) { double rx, dx, lx, hx, max_x, min_x; int64_t i; int64_t original_veclen; int64_t npoints; if ((npoints = events.size()) == 0) { for (i = 0; i < veclen; ++i) { vec[i] = default_value; } return; } /* events is now known not to be empty */ max_x = events.back()->when; min_x = events.front()->when; lx = max (min_x, x0); if (x1 < 0) { x1 = events.back()->when; } hx = min (max_x, x1); original_veclen = veclen; if (x0 < min_x) { /* fill some beginning section of the array with the initial (used to be default) value */ double frac = (min_x - x0) / (x1 - x0); int64_t subveclen = (int64_t) floor (veclen * frac); subveclen = min (subveclen, veclen); for (i = 0; i < subveclen; ++i) { vec[i] = events.front()->value; } veclen -= subveclen; vec += subveclen; } if (veclen && x1 > max_x) { /* fill some end section of the array with the default or final value */ double frac = (x1 - max_x) / (x1 - x0); int64_t subveclen = (int64_t) floor (original_veclen * frac); float val; subveclen = min (subveclen, veclen); val = events.back()->value; i = veclen - subveclen; for (i = veclen - subveclen; i < veclen; ++i) { vec[i] = val; } veclen -= subveclen; } if (veclen == 0) { return; } if (npoints == 1 ) { for (i = 0; i < veclen; ++i) { vec[i] = events.front()->value; } return; } if (npoints == 2) { /* linear interpolation between 2 points */ /* XXX I'm not sure that this is the right thing to do here. but its not a common case for the envisaged uses. */ if (veclen > 1) { dx = (hx - lx) / (veclen - 1) ; } else { dx = 0; // not used } double slope = (events.back()->value - events.front()->value)/ (events.back()->when - events.front()->when); double yfrac = dx*slope; vec[0] = events.front()->value + slope * (lx - events.front()->when); for (i = 1; i < veclen; ++i) { vec[i] = vec[i-1] + yfrac; } return; } if (_dirty) { solve (); } rx = lx; if (veclen > 1) { dx = (hx - lx) / veclen; for (i = 0; i < veclen; ++i, rx += dx) { vec[i] = multipoint_eval (rx); } } } double Curve::unlocked_eval (double x) { if (_dirty) { solve (); } return shared_eval (x); } double Curve::multipoint_eval (double x) { pair range; if ((lookup_cache.left < 0) || ((lookup_cache.left > x) || (lookup_cache.range.first == events.end()) || ((*lookup_cache.range.second)->when < x))) { TimeComparator cmp; ControlEvent cp (x, 0.0); lookup_cache.range = equal_range (events.begin(), events.end(), &cp, cmp); } range = lookup_cache.range; /* EITHER a) x is an existing control point, so first == existing point, second == next point OR b) x is between control points, so range is empty (first == second, points to where to insert x) */ if (range.first == range.second) { /* x does not exist within the list as a control point */ lookup_cache.left = x; if (range.first == events.begin()) { /* we're before the first point */ // return default_value; events.front()->value; } if (range.second == events.end()) { /* we're after the last point */ return events.back()->value; } double x2 = x * x; CurvePoint* cp = dynamic_cast (*range.second); return cp->coeff[0] + (cp->coeff[1] * x) + (cp->coeff[2] * x2) + (cp->coeff[3] * x2 * x); } /* x is a control point in the data */ /* invalidate the cached range because its not usable */ lookup_cache.left = -1; return (*range.first)->value; } ControlEvent* Curve::point_factory (double when, double val) const { return new CurvePoint (when, val); } ControlEvent* Curve::point_factory (const ControlEvent& other) const { return new CurvePoint (other.when, other.value); } extern "C" { void curve_get_vector_from_c (void *arg, double x0, double x1, float* vec, int64_t vecsize) { static_cast(arg)->get_vector (x0, x1, vec, vecsize); } }