/* Copyright (C) 2000-2006 Paul Davis This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include #include #include #include "pbd/basename.h" #include "pbd/xml++.h" #include "pbd/stacktrace.h" #include "pbd/enumwriter.h" #include "pbd/convert.h" #include "evoral/Curve.hpp" #include "ardour/audioregion.h" #include "ardour/session.h" #include "ardour/dB.h" #include "ardour/debug.h" #include "ardour/event_type_map.h" #include "ardour/playlist.h" #include "ardour/audiofilesource.h" #include "ardour/region_factory.h" #include "ardour/runtime_functions.h" #include "ardour/transient_detector.h" #include "ardour/parameter_descriptor.h" #include "ardour/progress.h" #include "ardour/sndfilesource.h" #ifdef HAVE_COREAUDIO #include "ardour/coreaudiosource.h" #endif // HAVE_COREAUDIO #include "pbd/i18n.h" #include using namespace std; using namespace ARDOUR; using namespace PBD; namespace ARDOUR { namespace Properties { PBD::PropertyDescriptor envelope_active; PBD::PropertyDescriptor default_fade_in; PBD::PropertyDescriptor default_fade_out; PBD::PropertyDescriptor fade_in_active; PBD::PropertyDescriptor fade_out_active; PBD::PropertyDescriptor scale_amplitude; PBD::PropertyDescriptor > fade_in; PBD::PropertyDescriptor > inverse_fade_in; PBD::PropertyDescriptor > fade_out; PBD::PropertyDescriptor > inverse_fade_out; PBD::PropertyDescriptor > envelope; } } /* Curve manipulations */ static void reverse_curve (boost::shared_ptr dst, boost::shared_ptr src) { size_t len = src->back()->when; for (Evoral::ControlList::const_reverse_iterator it = src->rbegin(); it!=src->rend(); it++) { dst->fast_simple_add (len - (*it)->when, (*it)->value); } } static void generate_inverse_power_curve (boost::shared_ptr dst, boost::shared_ptr src) { // calc inverse curve using sum of squares for (Evoral::ControlList::const_iterator it = src->begin(); it!=src->end(); ++it ) { float value = (*it)->value; value = 1 - powf(value,2); value = sqrtf(value); dst->fast_simple_add ( (*it)->when, value ); } } static void generate_db_fade (boost::shared_ptr dst, double len, int num_steps, float dB_drop) { dst->clear (); dst->fast_simple_add (0, 1); //generate a fade-out curve by successively applying a gain drop float fade_speed = dB_to_coefficient(dB_drop / (float) num_steps); float coeff = GAIN_COEFF_UNITY; for (int i = 1; i < (num_steps-1); i++) { coeff *= fade_speed; dst->fast_simple_add (len*(double)i/(double)num_steps, coeff); } dst->fast_simple_add (len, GAIN_COEFF_SMALL); } static void merge_curves (boost::shared_ptr dst, boost::shared_ptr curve1, boost::shared_ptr curve2) { Evoral::ControlList::EventList::size_type size = curve1->size(); //curve lengths must match for now if (size != curve2->size()) { return; } Evoral::ControlList::const_iterator c1 = curve1->begin(); int count = 0; for (Evoral::ControlList::const_iterator c2 = curve2->begin(); c2!=curve2->end(); c2++ ) { float v1 = accurate_coefficient_to_dB((*c1)->value); float v2 = accurate_coefficient_to_dB((*c2)->value); double interp = v1 * ( 1.0-( (double)count / (double)size) ); interp += v2 * ( (double)count / (double)size ); interp = dB_to_coefficient(interp); dst->fast_simple_add ( (*c1)->when, interp ); c1++; count++; } } void AudioRegion::make_property_quarks () { Properties::envelope_active.property_id = g_quark_from_static_string (X_("envelope-active")); DEBUG_TRACE (DEBUG::Properties, string_compose ("quark for envelope-active = %1\n", Properties::envelope_active.property_id)); Properties::default_fade_in.property_id = g_quark_from_static_string (X_("default-fade-in")); DEBUG_TRACE (DEBUG::Properties, string_compose ("quark for default-fade-in = %1\n", Properties::default_fade_in.property_id)); Properties::default_fade_out.property_id = g_quark_from_static_string (X_("default-fade-out")); DEBUG_TRACE (DEBUG::Properties, string_compose ("quark for default-fade-out = %1\n", Properties::default_fade_out.property_id)); Properties::fade_in_active.property_id = g_quark_from_static_string (X_("fade-in-active")); DEBUG_TRACE (DEBUG::Properties, string_compose ("quark for fade-in-active = %1\n", Properties::fade_in_active.property_id)); Properties::fade_out_active.property_id = g_quark_from_static_string (X_("fade-out-active")); DEBUG_TRACE (DEBUG::Properties, string_compose ("quark for fade-out-active = %1\n", Properties::fade_out_active.property_id)); Properties::scale_amplitude.property_id = g_quark_from_static_string (X_("scale-amplitude")); DEBUG_TRACE (DEBUG::Properties, string_compose ("quark for scale-amplitude = %1\n", Properties::scale_amplitude.property_id)); Properties::fade_in.property_id = g_quark_from_static_string (X_("FadeIn")); DEBUG_TRACE (DEBUG::Properties, string_compose ("quark for FadeIn = %1\n", Properties::fade_in.property_id)); Properties::inverse_fade_in.property_id = g_quark_from_static_string (X_("InverseFadeIn")); DEBUG_TRACE (DEBUG::Properties, string_compose ("quark for InverseFadeIn = %1\n", Properties::inverse_fade_in.property_id)); Properties::fade_out.property_id = g_quark_from_static_string (X_("FadeOut")); DEBUG_TRACE (DEBUG::Properties, string_compose ("quark for FadeOut = %1\n", Properties::fade_out.property_id)); Properties::inverse_fade_out.property_id = g_quark_from_static_string (X_("InverseFadeOut")); DEBUG_TRACE (DEBUG::Properties, string_compose ("quark for InverseFadeOut = %1\n", Properties::inverse_fade_out.property_id)); Properties::envelope.property_id = g_quark_from_static_string (X_("Envelope")); DEBUG_TRACE (DEBUG::Properties, string_compose ("quark for Envelope = %1\n", Properties::envelope.property_id)); } void AudioRegion::register_properties () { /* no need to register parent class properties */ add_property (_envelope_active); add_property (_default_fade_in); add_property (_default_fade_out); add_property (_fade_in_active); add_property (_fade_out_active); add_property (_scale_amplitude); add_property (_fade_in); add_property (_inverse_fade_in); add_property (_fade_out); add_property (_inverse_fade_out); add_property (_envelope); } #define AUDIOREGION_STATE_DEFAULT \ _envelope_active (Properties::envelope_active, false) \ , _default_fade_in (Properties::default_fade_in, true) \ , _default_fade_out (Properties::default_fade_out, true) \ , _fade_in_active (Properties::fade_in_active, true) \ , _fade_out_active (Properties::fade_out_active, true) \ , _scale_amplitude (Properties::scale_amplitude, 1.0) \ , _fade_in (Properties::fade_in, boost::shared_ptr (new AutomationList (Evoral::Parameter (FadeInAutomation)))) \ , _inverse_fade_in (Properties::inverse_fade_in, boost::shared_ptr (new AutomationList (Evoral::Parameter (FadeInAutomation)))) \ , _fade_out (Properties::fade_out, boost::shared_ptr (new AutomationList (Evoral::Parameter (FadeOutAutomation)))) \ , _inverse_fade_out (Properties::inverse_fade_out, boost::shared_ptr (new AutomationList (Evoral::Parameter (FadeOutAutomation)))) #define AUDIOREGION_COPY_STATE(other) \ _envelope_active (Properties::envelope_active, other->_envelope_active) \ , _default_fade_in (Properties::default_fade_in, other->_default_fade_in) \ , _default_fade_out (Properties::default_fade_out, other->_default_fade_out) \ , _fade_in_active (Properties::fade_in_active, other->_fade_in_active) \ , _fade_out_active (Properties::fade_out_active, other->_fade_out_active) \ , _scale_amplitude (Properties::scale_amplitude, other->_scale_amplitude) \ , _fade_in (Properties::fade_in, boost::shared_ptr (new AutomationList (*other->_fade_in.val()))) \ , _inverse_fade_in (Properties::fade_in, boost::shared_ptr (new AutomationList (*other->_inverse_fade_in.val()))) \ , _fade_out (Properties::fade_in, boost::shared_ptr (new AutomationList (*other->_fade_out.val()))) \ , _inverse_fade_out (Properties::fade_in, boost::shared_ptr (new AutomationList (*other->_inverse_fade_out.val()))) \ /* a Session will reset these to its chosen defaults by calling AudioRegion::set_default_fade() */ void AudioRegion::init () { register_properties (); suspend_property_changes(); set_default_fades (); set_default_envelope (); resume_property_changes(); listen_to_my_curves (); connect_to_analysis_changed (); connect_to_header_position_offset_changed (); } /** Constructor for use by derived types only */ AudioRegion::AudioRegion (Session& s, samplepos_t start, samplecnt_t len, std::string name) : Region (s, start, len, name, DataType::AUDIO) , AUDIOREGION_STATE_DEFAULT , _envelope (Properties::envelope, boost::shared_ptr (new AutomationList (Evoral::Parameter(EnvelopeAutomation)))) , _automatable (s) , _fade_in_suspended (0) , _fade_out_suspended (0) { init (); assert (_sources.size() == _master_sources.size()); } /** Basic AudioRegion constructor */ AudioRegion::AudioRegion (const SourceList& srcs) : Region (srcs) , AUDIOREGION_STATE_DEFAULT , _envelope (Properties::envelope, boost::shared_ptr (new AutomationList (Evoral::Parameter(EnvelopeAutomation)))) , _automatable(srcs[0]->session()) , _fade_in_suspended (0) , _fade_out_suspended (0) { init (); assert (_sources.size() == _master_sources.size()); } AudioRegion::AudioRegion (boost::shared_ptr other) : Region (other) , AUDIOREGION_COPY_STATE (other) /* As far as I can see, the _envelope's times are relative to region position, and have nothing to do with sources (and hence _start). So when we copy the envelope, we just use the supplied offset. */ , _envelope (Properties::envelope, boost::shared_ptr (new AutomationList (*other->_envelope.val(), 0, other->_length))) , _automatable (other->session()) , _fade_in_suspended (0) , _fade_out_suspended (0) { /* don't use init here, because we got fade in/out from the other region */ register_properties (); listen_to_my_curves (); connect_to_analysis_changed (); connect_to_header_position_offset_changed (); assert(_type == DataType::AUDIO); assert (_sources.size() == _master_sources.size()); } AudioRegion::AudioRegion (boost::shared_ptr other, MusicSample offset) : Region (other, offset) , AUDIOREGION_COPY_STATE (other) /* As far as I can see, the _envelope's times are relative to region position, and have nothing to do with sources (and hence _start). So when we copy the envelope, we just use the supplied offset. */ , _envelope (Properties::envelope, boost::shared_ptr (new AutomationList (*other->_envelope.val(), offset.sample, other->_length))) , _automatable (other->session()) , _fade_in_suspended (0) , _fade_out_suspended (0) { /* don't use init here, because we got fade in/out from the other region */ register_properties (); listen_to_my_curves (); connect_to_analysis_changed (); connect_to_header_position_offset_changed (); assert(_type == DataType::AUDIO); assert (_sources.size() == _master_sources.size()); } AudioRegion::AudioRegion (boost::shared_ptr other, const SourceList& srcs) : Region (boost::static_pointer_cast(other), srcs) , AUDIOREGION_COPY_STATE (other) , _envelope (Properties::envelope, boost::shared_ptr (new AutomationList (*other->_envelope.val()))) , _automatable (other->session()) , _fade_in_suspended (0) , _fade_out_suspended (0) { /* make-a-sort-of-copy-with-different-sources constructor (used by audio filter) */ register_properties (); listen_to_my_curves (); connect_to_analysis_changed (); connect_to_header_position_offset_changed (); assert (_sources.size() == _master_sources.size()); } AudioRegion::AudioRegion (SourceList& srcs) : Region (srcs) , AUDIOREGION_STATE_DEFAULT , _envelope (Properties::envelope, boost::shared_ptr (new AutomationList(Evoral::Parameter(EnvelopeAutomation)))) , _automatable(srcs[0]->session()) , _fade_in_suspended (0) , _fade_out_suspended (0) { init (); assert(_type == DataType::AUDIO); assert (_sources.size() == _master_sources.size()); } AudioRegion::~AudioRegion () { } void AudioRegion::post_set (const PropertyChange& /*ignored*/) { if (!_sync_marked) { _sync_position = _start; } /* return to default fades if the existing ones are too long */ if (_left_of_split) { if (_fade_in->back()->when >= _length) { set_default_fade_in (); } set_default_fade_out (); _left_of_split = false; } if (_right_of_split) { if (_fade_out->back()->when >= _length) { set_default_fade_out (); } set_default_fade_in (); _right_of_split = false; } /* If _length changed, adjust our gain envelope accordingly */ _envelope->truncate_end (_length); } void AudioRegion::connect_to_analysis_changed () { for (SourceList::const_iterator i = _sources.begin(); i != _sources.end(); ++i) { (*i)->AnalysisChanged.connect_same_thread (*this, boost::bind (&AudioRegion::maybe_invalidate_transients, this)); } } void AudioRegion::connect_to_header_position_offset_changed () { set > unique_srcs; for (SourceList::const_iterator i = _sources.begin(); i != _sources.end(); ++i) { /* connect only once to HeaderPositionOffsetChanged, even if sources are replicated */ if (unique_srcs.find (*i) == unique_srcs.end ()) { unique_srcs.insert (*i); boost::shared_ptr afs = boost::dynamic_pointer_cast (*i); if (afs) { afs->HeaderPositionOffsetChanged.connect_same_thread (*this, boost::bind (&AudioRegion::source_offset_changed, this)); } } } } void AudioRegion::listen_to_my_curves () { _envelope->StateChanged.connect_same_thread (*this, boost::bind (&AudioRegion::envelope_changed, this)); _fade_in->StateChanged.connect_same_thread (*this, boost::bind (&AudioRegion::fade_in_changed, this)); _fade_out->StateChanged.connect_same_thread (*this, boost::bind (&AudioRegion::fade_out_changed, this)); } void AudioRegion::set_envelope_active (bool yn) { if (envelope_active() != yn) { _envelope_active = yn; send_change (PropertyChange (Properties::envelope_active)); } } /** @param buf Buffer to put peak data in. * @param npeaks Number of peaks to read (ie the number of PeakDatas in buf) * @param offset Start position, as an offset from the start of this region's source. * @param cnt Number of samples to read. * @param chan_n Channel. * @param samples_per_pixel Number of samples to use to generate one peak value. */ ARDOUR::samplecnt_t AudioRegion::read_peaks (PeakData *buf, samplecnt_t npeaks, samplecnt_t offset, samplecnt_t cnt, uint32_t chan_n, double samples_per_pixel) const { if (chan_n >= _sources.size()) { return 0; } if (audio_source(chan_n)->read_peaks (buf, npeaks, offset, cnt, samples_per_pixel)) { return 0; } if (_scale_amplitude != 1.0f) { for (samplecnt_t n = 0; n < npeaks; ++n) { buf[n].max *= _scale_amplitude; buf[n].min *= _scale_amplitude; } } return npeaks; } /** @param buf Buffer to write data to (existing data will be overwritten). * @param pos Position to read from as an offset from the region position. * @param cnt Number of samples to read. * @param channel Channel to read from. */ samplecnt_t AudioRegion::read (Sample* buf, samplepos_t pos, samplecnt_t cnt, int channel) const { /* raw read, no fades, no gain, nada */ return read_from_sources (_sources, _length, buf, _position + pos, cnt, channel); } samplecnt_t AudioRegion::master_read_at (Sample *buf, Sample* /*mixdown_buffer*/, float* /*gain_buffer*/, samplepos_t position, samplecnt_t cnt, uint32_t chan_n) const { /* do not read gain/scaling/fades and do not count this disk i/o in statistics */ assert (cnt >= 0); return read_from_sources ( _master_sources, _master_sources.front()->length (_master_sources.front()->timeline_position()), buf, position, cnt, chan_n ); } /** @param buf Buffer to mix data into. * @param mixdown_buffer Scratch buffer for audio data. * @param gain_buffer Scratch buffer for gain data. * @param position Position within the session to read from. * @param cnt Number of samples to read. * @param chan_n Channel number to read. */ samplecnt_t AudioRegion::read_at (Sample *buf, Sample *mixdown_buffer, float *gain_buffer, samplepos_t position, samplecnt_t cnt, uint32_t chan_n) const { /* We are reading data from this region into buf (possibly via mixdown_buffer). The caller has verified that we cover the desired section. */ /* See doc/region_read.svg for a drawing which might help to explain what is going on. */ assert (cnt >= 0); if (n_channels() == 0) { return 0; } /* WORK OUT WHERE TO GET DATA FROM */ samplecnt_t to_read; assert (position >= _position); sampleoffset_t const internal_offset = position - _position; if (internal_offset >= _length) { return 0; /* read nothing */ } if ((to_read = min (cnt, _length - internal_offset)) == 0) { return 0; /* read nothing */ } boost::shared_ptr pl (playlist()); if (!pl){ return 0; } /* COMPUTE DETAILS OF ANY FADES INVOLVED IN THIS READ */ /* Amount (length) of fade in that we are dealing with in this read */ samplecnt_t fade_in_limit = 0; /* Offset from buf / mixdown_buffer of the start of any fade out that we are dealing with */ sampleoffset_t fade_out_offset = 0; /* Amount (length) of fade out that we are dealing with in this read */ samplecnt_t fade_out_limit = 0; samplecnt_t fade_interval_start = 0; /* Fade in */ if (_fade_in_active && _session.config.get_use_region_fades()) { samplecnt_t fade_in_length = (samplecnt_t) _fade_in->back()->when; /* see if this read is within the fade in */ if (internal_offset < fade_in_length) { fade_in_limit = min (to_read, fade_in_length - internal_offset); } } /* Fade out */ if (_fade_out_active && _session.config.get_use_region_fades()) { /* see if some part of this read is within the fade out */ /* ................. >| REGION * _length * * { } FADE * fade_out_length * ^ * _length - fade_out_length * * |--------------| * ^internal_offset * ^internal_offset + to_read * * we need the intersection of [internal_offset,internal_offset+to_read] with * [_length - fade_out_length, _length] * */ fade_interval_start = max (internal_offset, _length - samplecnt_t (_fade_out->back()->when)); samplecnt_t fade_interval_end = min(internal_offset + to_read, _length.val()); if (fade_interval_end > fade_interval_start) { /* (part of the) the fade out is in this buffer */ fade_out_limit = fade_interval_end - fade_interval_start; fade_out_offset = fade_interval_start - internal_offset; } } /* READ DATA FROM THE SOURCE INTO mixdown_buffer. We can never read directly into buf, since it may contain data from a region `below' this one in the stack, and our fades (if they exist) may need to mix with the existing data. */ if (read_from_sources (_sources, _length, mixdown_buffer, position, to_read, chan_n) != to_read) { return 0; } /* APPLY REGULAR GAIN CURVES AND SCALING TO mixdown_buffer */ if (envelope_active()) { _envelope->curve().get_vector (internal_offset, internal_offset + to_read, gain_buffer, to_read); if (_scale_amplitude != 1.0f) { for (samplecnt_t n = 0; n < to_read; ++n) { mixdown_buffer[n] *= gain_buffer[n] * _scale_amplitude; } } else { for (samplecnt_t n = 0; n < to_read; ++n) { mixdown_buffer[n] *= gain_buffer[n]; } } } else if (_scale_amplitude != 1.0f) { apply_gain_to_buffer (mixdown_buffer, to_read, _scale_amplitude); } /* APPLY FADES TO THE DATA IN mixdown_buffer AND MIX THE RESULTS INTO * buf. The key things to realize here: (1) the fade being applied is * (as of April 26th 2012) just the inverse of the fade in curve (2) * "buf" contains data from lower regions already. So this operation * fades out the existing material. */ bool is_opaque = opaque(); if (fade_in_limit != 0) { if (is_opaque) { if (_inverse_fade_in) { /* explicit inverse fade in curve (e.g. for constant * power), so we have to fetch it. */ _inverse_fade_in->curve().get_vector (internal_offset, internal_offset + fade_in_limit, gain_buffer, fade_in_limit); /* Fade the data from lower layers out */ for (samplecnt_t n = 0; n < fade_in_limit; ++n) { buf[n] *= gain_buffer[n]; } /* refill gain buffer with the fade in */ _fade_in->curve().get_vector (internal_offset, internal_offset + fade_in_limit, gain_buffer, fade_in_limit); } else { /* no explicit inverse fade in, so just use (1 - fade * in) for the fade out of lower layers */ _fade_in->curve().get_vector (internal_offset, internal_offset + fade_in_limit, gain_buffer, fade_in_limit); for (samplecnt_t n = 0; n < fade_in_limit; ++n) { buf[n] *= 1 - gain_buffer[n]; } } } else { _fade_in->curve().get_vector (internal_offset, internal_offset + fade_in_limit, gain_buffer, fade_in_limit); } /* Mix our newly-read data in, with the fade */ for (samplecnt_t n = 0; n < fade_in_limit; ++n) { buf[n] += mixdown_buffer[n] * gain_buffer[n]; } } if (fade_out_limit != 0) { samplecnt_t const curve_offset = fade_interval_start - (_length - _fade_out->back()->when); if (is_opaque) { if (_inverse_fade_out) { _inverse_fade_out->curve().get_vector (curve_offset, curve_offset + fade_out_limit, gain_buffer, fade_out_limit); /* Fade the data from lower levels in */ for (samplecnt_t n = 0, m = fade_out_offset; n < fade_out_limit; ++n, ++m) { buf[m] *= gain_buffer[n]; } /* fetch the actual fade out */ _fade_out->curve().get_vector (curve_offset, curve_offset + fade_out_limit, gain_buffer, fade_out_limit); } else { /* no explicit inverse fade out (which is * actually a fade in), so just use (1 - fade * out) for the fade in of lower layers */ _fade_out->curve().get_vector (curve_offset, curve_offset + fade_out_limit, gain_buffer, fade_out_limit); for (samplecnt_t n = 0, m = fade_out_offset; n < fade_out_limit; ++n, ++m) { buf[m] *= 1 - gain_buffer[n]; } } } else { _fade_out->curve().get_vector (curve_offset, curve_offset + fade_out_limit, gain_buffer, fade_out_limit); } /* Mix our newly-read data with whatever was already there, with the fade out applied to our data. */ for (samplecnt_t n = 0, m = fade_out_offset; n < fade_out_limit; ++n, ++m) { buf[m] += mixdown_buffer[m] * gain_buffer[n]; } } /* MIX OR COPY THE REGION BODY FROM mixdown_buffer INTO buf */ samplecnt_t const N = to_read - fade_in_limit - fade_out_limit; if (N > 0) { if (is_opaque) { DEBUG_TRACE (DEBUG::AudioPlayback, string_compose ("Region %1 memcpy into buf @ %2 + %3, from mixdown buffer @ %4 + %5, len = %6 cnt was %7\n", name(), buf, fade_in_limit, mixdown_buffer, fade_in_limit, N, cnt)); memcpy (buf + fade_in_limit, mixdown_buffer + fade_in_limit, N * sizeof (Sample)); } else { mix_buffers_no_gain (buf + fade_in_limit, mixdown_buffer + fade_in_limit, N); } } return to_read; } /** Read data directly from one of our sources, accounting for the situation when the track has a different channel * count to the region. * * @param srcs Source list to get our source from. * @param limit Furthest that we should read, as an offset from the region position. * @param buf Buffer to write data into (existing contents of the buffer will be overwritten) * @param position Position to read from, in session samples. * @param cnt Number of samples to read. * @param chan_n Channel to read from. * @return Number of samples read. */ samplecnt_t AudioRegion::read_from_sources (SourceList const & srcs, samplecnt_t limit, Sample* buf, samplepos_t position, samplecnt_t cnt, uint32_t chan_n) const { sampleoffset_t const internal_offset = position - _position; if (internal_offset >= limit) { return 0; } samplecnt_t const to_read = min (cnt, limit - internal_offset); if (to_read == 0) { return 0; } if (chan_n < n_channels()) { boost::shared_ptr src = boost::dynamic_pointer_cast (srcs[chan_n]); if (src->read (buf, _start + internal_offset, to_read) != to_read) { return 0; /* "read nothing" */ } } else { /* track is N-channel, this region has fewer channels; silence the ones we don't have. */ if (Config->get_replicate_missing_region_channels()) { /* copy an existing channel's data in for this non-existant one */ uint32_t channel = chan_n % n_channels(); boost::shared_ptr src = boost::dynamic_pointer_cast (srcs[channel]); if (src->read (buf, _start + internal_offset, to_read) != to_read) { return 0; /* "read nothing" */ } } else { /* use silence */ memset (buf, 0, sizeof (Sample) * to_read); } } return to_read; } XMLNode& AudioRegion::get_basic_state () { XMLNode& node (Region::state ()); node.set_property ("channels", (uint32_t)_sources.size()); return node; } XMLNode& AudioRegion::state () { XMLNode& node (get_basic_state()); XMLNode *child; child = node.add_child ("Envelope"); bool default_env = false; // If there are only two points, the points are in the start of the region and the end of the region // so, if they are both at 1.0f, that means the default region. if (_envelope->size() == 2 && _envelope->front()->value == GAIN_COEFF_UNITY && _envelope->back()->value==GAIN_COEFF_UNITY) { if (_envelope->front()->when == 0 && _envelope->back()->when == _length) { default_env = true; } } if (default_env) { child->set_property ("default", "yes"); } else { child->add_child_nocopy (_envelope->get_state ()); } child = node.add_child (X_("FadeIn")); if (_default_fade_in) { child->set_property ("default", "yes"); } else { child->add_child_nocopy (_fade_in->get_state ()); } if (_inverse_fade_in) { child = node.add_child (X_("InverseFadeIn")); child->add_child_nocopy (_inverse_fade_in->get_state ()); } child = node.add_child (X_("FadeOut")); if (_default_fade_out) { child->set_property ("default", "yes"); } else { child->add_child_nocopy (_fade_out->get_state ()); } if (_inverse_fade_out) { child = node.add_child (X_("InverseFadeOut")); child->add_child_nocopy (_inverse_fade_out->get_state ()); } return node; } int AudioRegion::_set_state (const XMLNode& node, int version, PropertyChange& what_changed, bool send) { const XMLNodeList& nlist = node.children(); boost::shared_ptr the_playlist (_playlist.lock()); suspend_property_changes (); if (the_playlist) { the_playlist->freeze (); } /* this will set all our State members and stuff controlled by the Region. It should NOT send any changed signals - that is our responsibility. */ Region::_set_state (node, version, what_changed, false); float val; if (node.get_property ("scale-gain", val)) { if (val != _scale_amplitude) { _scale_amplitude = val; what_changed.add (Properties::scale_amplitude); } } /* Now find envelope description and other related child items */ _envelope->freeze (); for (XMLNodeConstIterator niter = nlist.begin(); niter != nlist.end(); ++niter) { XMLNode *child; XMLProperty const * prop; child = (*niter); if (child->name() == "Envelope") { _envelope->clear (); if ((prop = child->property ("default")) != 0 || _envelope->set_state (*child, version)) { set_default_envelope (); } _envelope->truncate_end (_length); } else if (child->name() == "FadeIn") { _fade_in->clear (); bool is_default; if ((child->get_property ("default", is_default) && is_default) || (prop = child->property ("steepness")) != 0) { set_default_fade_in (); } else { XMLNode* grandchild = child->child ("AutomationList"); if (grandchild) { _fade_in->set_state (*grandchild, version); } } bool is_active; if (child->get_property ("active", is_active)) { set_fade_in_active (is_active); } } else if (child->name() == "FadeOut") { _fade_out->clear (); bool is_default; if ((child->get_property ("default", is_default) && is_default) || (prop = child->property ("steepness")) != 0) { set_default_fade_out (); } else { XMLNode* grandchild = child->child ("AutomationList"); if (grandchild) { _fade_out->set_state (*grandchild, version); } } bool is_active; if (child->get_property ("active", is_active)) { set_fade_out_active (is_active); } } else if ( (child->name() == "InverseFadeIn") || (child->name() == "InvFadeIn") ) { XMLNode* grandchild = child->child ("AutomationList"); if (grandchild) { _inverse_fade_in->set_state (*grandchild, version); } } else if ( (child->name() == "InverseFadeOut") || (child->name() == "InvFadeOut") ) { XMLNode* grandchild = child->child ("AutomationList"); if (grandchild) { _inverse_fade_out->set_state (*grandchild, version); } } } _envelope->thaw (); resume_property_changes (); if (send) { send_change (what_changed); } if (the_playlist) { the_playlist->thaw (); } return 0; } int AudioRegion::set_state (const XMLNode& node, int version) { PropertyChange what_changed; return _set_state (node, version, what_changed, true); } void AudioRegion::fade_range (samplepos_t start, samplepos_t end) { samplepos_t s, e; switch (coverage (start, end)) { case Evoral::OverlapStart: trim_front(start); s = _position; e = end; set_fade_in (FadeConstantPower, e - s); break; case Evoral::OverlapEnd: trim_end(end); s = start; e = _position + _length; set_fade_out (FadeConstantPower, e - s); break; case Evoral::OverlapInternal: /* needs addressing, perhaps. Difficult to do if we can't * control one edge of the fade relative to the relevant edge * of the region, which we cannot - fades are currently assumed * to start/end at the start/end of the region */ break; default: return; } } void AudioRegion::set_fade_in_shape (FadeShape shape) { set_fade_in (shape, (samplecnt_t) _fade_in->back()->when); } void AudioRegion::set_fade_out_shape (FadeShape shape) { set_fade_out (shape, (samplecnt_t) _fade_out->back()->when); } void AudioRegion::set_fade_in (boost::shared_ptr f) { _fade_in->freeze (); *(_fade_in.val()) = *f; _fade_in->thaw (); _default_fade_in = false; send_change (PropertyChange (Properties::fade_in)); } void AudioRegion::set_fade_in (FadeShape shape, samplecnt_t len) { const ARDOUR::ParameterDescriptor desc(FadeInAutomation); boost::shared_ptr c1 (new Evoral::ControlList (FadeInAutomation, desc)); boost::shared_ptr c2 (new Evoral::ControlList (FadeInAutomation, desc)); boost::shared_ptr c3 (new Evoral::ControlList (FadeInAutomation, desc)); _fade_in->freeze (); _fade_in->clear (); _inverse_fade_in->clear (); const int num_steps = 32; switch (shape) { case FadeLinear: _fade_in->fast_simple_add (0.0, GAIN_COEFF_SMALL); _fade_in->fast_simple_add (len, GAIN_COEFF_UNITY); reverse_curve (_inverse_fade_in.val(), _fade_in.val()); break; case FadeFast: generate_db_fade (_fade_in.val(), len, num_steps, -60); reverse_curve (c1, _fade_in.val()); _fade_in->copy_events (*c1); generate_inverse_power_curve (_inverse_fade_in.val(), _fade_in.val()); break; case FadeSlow: generate_db_fade (c1, len, num_steps, -1); // start off with a slow fade generate_db_fade (c2, len, num_steps, -80); // end with a fast fade merge_curves (_fade_in.val(), c1, c2); reverse_curve (c3, _fade_in.val()); _fade_in->copy_events (*c3); generate_inverse_power_curve (_inverse_fade_in.val(), _fade_in.val()); break; case FadeConstantPower: _fade_in->fast_simple_add (0.0, GAIN_COEFF_SMALL); for (int i = 1; i < num_steps; ++i) { const float dist = i / (num_steps + 1.f); _fade_in->fast_simple_add (len * dist, sin (dist * M_PI / 2.0)); } _fade_in->fast_simple_add (len, GAIN_COEFF_UNITY); reverse_curve (_inverse_fade_in.val(), _fade_in.val()); break; case FadeSymmetric: //start with a nearly linear cuve _fade_in->fast_simple_add (0, 1); _fade_in->fast_simple_add (0.5 * len, 0.6); //now generate a fade-out curve by successively applying a gain drop const double breakpoint = 0.7; //linear for first 70% for (int i = 2; i < 9; ++i) { const float coeff = (1.f - breakpoint) * powf (0.5, i); _fade_in->fast_simple_add (len * (breakpoint + ((GAIN_COEFF_UNITY - breakpoint) * (double)i / 9.0)), coeff); } _fade_in->fast_simple_add (len, GAIN_COEFF_SMALL); reverse_curve (c3, _fade_in.val()); _fade_in->copy_events (*c3); reverse_curve (_inverse_fade_in.val(), _fade_in.val()); break; } _fade_in->set_interpolation(Evoral::ControlList::Curved); _inverse_fade_in->set_interpolation(Evoral::ControlList::Curved); _default_fade_in = false; _fade_in->thaw (); send_change (PropertyChange (Properties::fade_in)); } void AudioRegion::set_fade_out (boost::shared_ptr f) { _fade_out->freeze (); *(_fade_out.val()) = *f; _fade_out->thaw (); _default_fade_out = false; send_change (PropertyChange (Properties::fade_out)); } void AudioRegion::set_fade_out (FadeShape shape, samplecnt_t len) { const ARDOUR::ParameterDescriptor desc(FadeOutAutomation); boost::shared_ptr c1 (new Evoral::ControlList (FadeOutAutomation, desc)); boost::shared_ptr c2 (new Evoral::ControlList (FadeOutAutomation, desc)); _fade_out->freeze (); _fade_out->clear (); _inverse_fade_out->clear (); const int num_steps = 32; switch (shape) { case FadeLinear: _fade_out->fast_simple_add (0.0, GAIN_COEFF_UNITY); _fade_out->fast_simple_add (len, GAIN_COEFF_SMALL); reverse_curve (_inverse_fade_out.val(), _fade_out.val()); break; case FadeFast: generate_db_fade (_fade_out.val(), len, num_steps, -60); generate_inverse_power_curve (_inverse_fade_out.val(), _fade_out.val()); break; case FadeSlow: generate_db_fade (c1, len, num_steps, -1); //start off with a slow fade generate_db_fade (c2, len, num_steps, -80); //end with a fast fade merge_curves (_fade_out.val(), c1, c2); generate_inverse_power_curve (_inverse_fade_out.val(), _fade_out.val()); break; case FadeConstantPower: //constant-power fades use a sin/cos relationship //the cutoff is abrupt but it has the benefit of being symmetrical _fade_out->fast_simple_add (0.0, GAIN_COEFF_UNITY); for (int i = 1; i < num_steps; ++i) { const float dist = i / (num_steps + 1.f); _fade_out->fast_simple_add (len * dist, cos (dist * M_PI / 2.0)); } _fade_out->fast_simple_add (len, GAIN_COEFF_SMALL); reverse_curve (_inverse_fade_out.val(), _fade_out.val()); break; case FadeSymmetric: //start with a nearly linear cuve _fade_out->fast_simple_add (0, 1); _fade_out->fast_simple_add (0.5 * len, 0.6); //now generate a fade-out curve by successively applying a gain drop const double breakpoint = 0.7; //linear for first 70% for (int i = 2; i < 9; ++i) { const float coeff = (1.f - breakpoint) * powf (0.5, i); _fade_out->fast_simple_add (len * (breakpoint + ((GAIN_COEFF_UNITY - breakpoint) * (double)i / 9.0)), coeff); } _fade_out->fast_simple_add (len, GAIN_COEFF_SMALL); reverse_curve (_inverse_fade_out.val(), _fade_out.val()); break; } _fade_out->set_interpolation(Evoral::ControlList::Curved); _inverse_fade_out->set_interpolation(Evoral::ControlList::Curved); _default_fade_out = false; _fade_out->thaw (); send_change (PropertyChange (Properties::fade_out)); } void AudioRegion::set_fade_in_length (samplecnt_t len) { if (len > _length) { len = _length - 1; } if (len < 64) { len = 64; } bool changed = _fade_in->extend_to (len); if (changed) { if (_inverse_fade_in) { _inverse_fade_in->extend_to (len); } _default_fade_in = false; send_change (PropertyChange (Properties::fade_in)); } } void AudioRegion::set_fade_out_length (samplecnt_t len) { if (len > _length) { len = _length - 1; } if (len < 64) { len = 64; } bool changed = _fade_out->extend_to (len); if (changed) { if (_inverse_fade_out) { _inverse_fade_out->extend_to (len); } _default_fade_out = false; send_change (PropertyChange (Properties::fade_out)); } } void AudioRegion::set_fade_in_active (bool yn) { if (yn == _fade_in_active) { return; } _fade_in_active = yn; send_change (PropertyChange (Properties::fade_in_active)); } void AudioRegion::set_fade_out_active (bool yn) { if (yn == _fade_out_active) { return; } _fade_out_active = yn; send_change (PropertyChange (Properties::fade_out_active)); } bool AudioRegion::fade_in_is_default () const { return _fade_in->size() == 2 && _fade_in->front()->when == 0 && _fade_in->back()->when == 64; } bool AudioRegion::fade_out_is_default () const { return _fade_out->size() == 2 && _fade_out->front()->when == 0 && _fade_out->back()->when == 64; } void AudioRegion::set_default_fade_in () { _fade_in_suspended = 0; set_fade_in (Config->get_default_fade_shape(), 64); } void AudioRegion::set_default_fade_out () { _fade_out_suspended = 0; set_fade_out (Config->get_default_fade_shape(), 64); } void AudioRegion::set_default_fades () { set_default_fade_in (); set_default_fade_out (); } void AudioRegion::set_default_envelope () { _envelope->freeze (); _envelope->clear (); _envelope->fast_simple_add (0, GAIN_COEFF_UNITY); _envelope->fast_simple_add (_length, GAIN_COEFF_UNITY); _envelope->thaw (); } void AudioRegion::recompute_at_end () { /* our length has changed. recompute a new final point by interpolating based on the the existing curve. */ _envelope->freeze (); _envelope->truncate_end (_length); _envelope->thaw (); suspend_property_changes(); if (_left_of_split) { set_default_fade_out (); _left_of_split = false; } else if (_fade_out->back()->when > _length) { _fade_out->extend_to (_length); send_change (PropertyChange (Properties::fade_out)); } if (_fade_in->back()->when > _length) { _fade_in->extend_to (_length); send_change (PropertyChange (Properties::fade_in)); } resume_property_changes(); } void AudioRegion::recompute_at_start () { /* as above, but the shift was from the front */ _envelope->truncate_start (_length); suspend_property_changes(); if (_right_of_split) { set_default_fade_in (); _right_of_split = false; } else if (_fade_in->back()->when > _length) { _fade_in->extend_to (_length); send_change (PropertyChange (Properties::fade_in)); } if (_fade_out->back()->when > _length) { _fade_out->extend_to (_length); send_change (PropertyChange (Properties::fade_out)); } resume_property_changes(); } int AudioRegion::separate_by_channel (vector >& v) const { SourceList srcs; string new_name; int n = 0; if (_sources.size() < 2) { return 0; } for (SourceList::const_iterator i = _sources.begin(); i != _sources.end(); ++i) { srcs.clear (); srcs.push_back (*i); new_name = _name; if (_sources.size() == 2) { if (n == 0) { new_name += "-L"; } else { new_name += "-R"; } } else { new_name += '-'; new_name += ('0' + n + 1); } /* create a copy with just one source. prevent if from being thought of as "whole file" even if it covers the entire source file(s). */ PropertyList plist; plist.add (Properties::start, _start.val()); plist.add (Properties::length, _length.val()); plist.add (Properties::name, new_name); plist.add (Properties::layer, layer ()); v.push_back(RegionFactory::create (srcs, plist)); v.back()->set_whole_file (false); ++n; } return 0; } samplecnt_t AudioRegion::read_raw_internal (Sample* buf, samplepos_t pos, samplecnt_t cnt, int channel) const { return audio_source(channel)->read (buf, pos, cnt); } void AudioRegion::set_scale_amplitude (gain_t g) { boost::shared_ptr pl (playlist()); _scale_amplitude = g; /* tell the diskstream we're in */ if (pl) { pl->ContentsChanged(); } /* tell everybody else */ send_change (PropertyChange (Properties::scale_amplitude)); } double AudioRegion::maximum_amplitude (Progress* p) const { samplepos_t fpos = _start; samplepos_t const fend = _start + _length; double maxamp = 0; samplecnt_t const blocksize = 64 * 1024; Sample buf[blocksize]; while (fpos < fend) { uint32_t n; samplecnt_t const to_read = min (fend - fpos, blocksize); for (n = 0; n < n_channels(); ++n) { /* read it in */ if (read_raw_internal (buf, fpos, to_read, n) != to_read) { return 0; } maxamp = compute_peak (buf, to_read, maxamp); } fpos += to_read; if (p) { p->set_progress (float (fpos - _start) / _length); if (p->cancelled ()) { return -1; } } } return maxamp; } double AudioRegion::rms (Progress* p) const { samplepos_t fpos = _start; samplepos_t const fend = _start + _length; uint32_t const n_chan = n_channels (); double rms = 0; samplecnt_t const blocksize = 64 * 1024; Sample buf[blocksize]; samplecnt_t total = 0; if (n_chan == 0 || fend == fpos) { return 0; } while (fpos < fend) { samplecnt_t const to_read = min (fend - fpos, blocksize); for (uint32_t c = 0; c < n_chan; ++c) { if (read_raw_internal (buf, fpos, to_read, c) != to_read) { return 0; } for (samplepos_t i = 0; i < to_read; ++i) { rms += buf[i] * buf[i]; } } total += to_read; fpos += to_read; if (p) { p->set_progress (float (fpos - _start) / _length); if (p->cancelled ()) { return -1; } } } return sqrt (2. * rms / (double)(total * n_chan)); } /** Normalize using a given maximum amplitude and target, so that region * _scale_amplitude becomes target / max_amplitude. */ void AudioRegion::normalize (float max_amplitude, float target_dB) { gain_t target = dB_to_coefficient (target_dB); if (target == GAIN_COEFF_UNITY) { /* do not normalize to precisely 1.0 (0 dBFS), to avoid making it appear that we may have clipped. */ target -= FLT_EPSILON; } if (max_amplitude < GAIN_COEFF_SMALL) { /* don't even try */ return; } if (max_amplitude == target) { /* we can't do anything useful */ return; } set_scale_amplitude (target / max_amplitude); } void AudioRegion::fade_in_changed () { send_change (PropertyChange (Properties::fade_in)); } void AudioRegion::fade_out_changed () { send_change (PropertyChange (Properties::fade_out)); } void AudioRegion::envelope_changed () { send_change (PropertyChange (Properties::envelope)); } void AudioRegion::suspend_fade_in () { if (++_fade_in_suspended == 1) { if (fade_in_is_default()) { set_fade_in_active (false); } } } void AudioRegion::resume_fade_in () { if (--_fade_in_suspended == 0 && _fade_in_suspended) { set_fade_in_active (true); } } void AudioRegion::suspend_fade_out () { if (++_fade_out_suspended == 1) { if (fade_out_is_default()) { set_fade_out_active (false); } } } void AudioRegion::resume_fade_out () { if (--_fade_out_suspended == 0 &&_fade_out_suspended) { set_fade_out_active (true); } } bool AudioRegion::speed_mismatch (float sr) const { if (_sources.empty()) { /* impossible, but ... */ return false; } float fsr = audio_source()->sample_rate(); return fsr != sr; } void AudioRegion::source_offset_changed () { /* XXX this fixes a crash that should not occur. It does occur becauses regions are not being deleted when a session is unloaded. That bug must be fixed. */ if (_sources.empty()) { return; } boost::shared_ptr afs = boost::dynamic_pointer_cast(_sources.front()); if (afs && afs->destructive()) { // set_start (source()->natural_position(), this); set_position (source()->natural_position()); } } boost::shared_ptr AudioRegion::audio_source (uint32_t n) const { // Guaranteed to succeed (use a static cast for speed?) return boost::dynamic_pointer_cast(source(n)); } uint32_t AudioRegion::get_related_audio_file_channel_count () const { uint32_t chan_count = 0; for (SourceList::const_iterator i = _sources.begin(); i != _sources.end(); ++i) { boost::shared_ptr sndf = boost::dynamic_pointer_cast(*i); if (sndf ) { if (sndf->channel_count() > chan_count) { chan_count = sndf->channel_count(); } } #ifdef HAVE_COREAUDIO else { boost::shared_ptr cauf = boost::dynamic_pointer_cast(*i); if (cauf) { if (cauf->channel_count() > chan_count) { chan_count = cauf->channel_count(); } } } #endif // HAVE_COREAUDIO } return chan_count; } void AudioRegion::clear_transients () // yet unused { _user_transients.clear (); _valid_transients = false; send_change (PropertyChange (Properties::valid_transients)); } void AudioRegion::add_transient (samplepos_t where) { if (where < first_sample () || where >= last_sample ()) { return; } where -= _position; if (!_valid_transients) { _transient_user_start = _start; _valid_transients = true; } sampleoffset_t offset = _transient_user_start - _start; if (where < offset) { if (offset <= 0) { return; } // region start changed (extend to front), shift points and offset for (AnalysisFeatureList::iterator x = _transients.begin(); x != _transients.end(); ++x) { (*x) += offset; } _transient_user_start -= offset; offset = 0; } const samplepos_t p = where - offset; _user_transients.push_back(p); send_change (PropertyChange (Properties::valid_transients)); } void AudioRegion::update_transient (samplepos_t old_position, samplepos_t new_position) { bool changed = false; if (!_onsets.empty ()) { const samplepos_t p = old_position - _position; AnalysisFeatureList::iterator x = std::find (_onsets.begin (), _onsets.end (), p); if (x != _transients.end ()) { (*x) = new_position - _position; changed = true; } } if (_valid_transients) { const sampleoffset_t offset = _position + _transient_user_start - _start; const samplepos_t p = old_position - offset; AnalysisFeatureList::iterator x = std::find (_user_transients.begin (), _user_transients.end (), p); if (x != _transients.end ()) { (*x) = new_position - offset; changed = true; } } if (changed) { send_change (PropertyChange (Properties::valid_transients)); } } void AudioRegion::remove_transient (samplepos_t where) { bool changed = false; if (!_onsets.empty ()) { const samplepos_t p = where - _position; AnalysisFeatureList::iterator i = std::find (_onsets.begin (), _onsets.end (), p); if (i != _transients.end ()) { _onsets.erase (i); changed = true; } } if (_valid_transients) { const samplepos_t p = where - (_position + _transient_user_start - _start); AnalysisFeatureList::iterator i = std::find (_user_transients.begin (), _user_transients.end (), p); if (i != _transients.end ()) { _transients.erase (i); changed = true; } } if (changed) { send_change (PropertyChange (Properties::valid_transients)); } } void AudioRegion::set_onsets (AnalysisFeatureList& results) { _onsets.clear(); _onsets = results; send_change (PropertyChange (Properties::valid_transients)); } void AudioRegion::build_transients () { _transients.clear (); _transient_analysis_start = _transient_analysis_end = 0; boost::shared_ptr pl = playlist(); if (!pl) { return; } /* check analyzed sources first */ SourceList::iterator s; for (s = _sources.begin() ; s != _sources.end(); ++s) { if (!(*s)->has_been_analysed()) { #ifndef NDEBUG cerr << "For " << name() << " source " << (*s)->name() << " has not been analyzed\n"; #endif break; } } if (s == _sources.end()) { /* all sources are analyzed, merge data from each one */ for (s = _sources.begin() ; s != _sources.end(); ++s) { /* find the set of transients within the bounds of this region */ AnalysisFeatureList::iterator low = lower_bound ((*s)->transients.begin(), (*s)->transients.end(), _start); AnalysisFeatureList::iterator high = upper_bound ((*s)->transients.begin(), (*s)->transients.end(), _start + _length); /* and add them */ _transients.insert (_transients.end(), low, high); } TransientDetector::cleanup_transients (_transients, pl->session().sample_rate(), 3.0); /* translate all transients to current position */ for (AnalysisFeatureList::iterator x = _transients.begin(); x != _transients.end(); ++x) { (*x) -= _start; } _transient_analysis_start = _start; _transient_analysis_end = _start + _length; return; } /* no existing/complete transient info */ static bool analyse_dialog_shown = false; /* global per instance of Ardour */ if (!Config->get_auto_analyse_audio()) { if (!analyse_dialog_shown) { pl->session().Dialog (string_compose (_("\ You have requested an operation that requires audio analysis.\n\n\ You currently have \"auto-analyse-audio\" disabled, which means \ that transient data must be generated every time it is required.\n\n\ If you are doing work that will require transient data on a \ regular basis, you should probably enable \"auto-analyse-audio\" \ in Preferences > Audio > Regions, then quit %1 and restart.\n\n\ This dialog will not display again. But you may notice a slight delay \ in this and future transient-detection operations.\n\ "), PROGRAM_NAME)); analyse_dialog_shown = true; } } try { TransientDetector t (pl->session().sample_rate()); for (uint32_t i = 0; i < n_channels(); ++i) { AnalysisFeatureList these_results; t.reset (); /* this produces analysis result relative to current position * ::read() sample 0 is at _position */ if (t.run ("", this, i, these_results)) { return; } /* merge */ _transients.insert (_transients.end(), these_results.begin(), these_results.end()); } } catch (...) { error << string_compose(_("Transient Analysis failed for %1."), _("Audio Region")) << endmsg; return; } TransientDetector::cleanup_transients (_transients, pl->session().sample_rate(), 3.0); _transient_analysis_start = _start; _transient_analysis_end = _start + _length; } /* Transient analysis uses ::read() which is relative to _start, * at the time of analysis and spans _length samples. * * This is true for RhythmFerret::run_analysis and the * TransientDetector here. * * We store _start and length in _transient_analysis_start, * _transient_analysis_end in case the region is trimmed or split after analysis. * * Various methods (most notably Playlist::find_next_transient and * RhythmFerret::do_split_action) span multiple regions and *merge/combine* * Analysis results. * We therefore need to translate the analysis timestamps to absolute session-time * and include the _position of the region. * * Note: we should special case the AudioRegionView. The region-view itself * is located at _position (currently ARV subtracts _position again) */ void AudioRegion::get_transients (AnalysisFeatureList& results) { boost::shared_ptr pl = playlist(); if (!playlist ()) { return; } Region::merge_features (results, _user_transients, _position + _transient_user_start - _start); if (!_onsets.empty ()) { // onsets are invalidated when start or length changes merge_features (results, _onsets, _position); return; } if ((_transient_analysis_start == _transient_analysis_end) || _transient_analysis_start > _start || _transient_analysis_end < _start + _length) { build_transients (); } merge_features (results, _transients, _position + _transient_analysis_start - _start); } /** Find areas of `silence' within a region. * * @param threshold Threshold below which signal is considered silence (as a sample value) * @param min_length Minimum length of silent period to be reported. * @return Silent intervals, measured relative to the region start in the source */ AudioIntervalResult AudioRegion::find_silence (Sample threshold, samplecnt_t min_length, samplecnt_t fade_length, InterThreadInfo& itt) const { samplecnt_t const block_size = 64 * 1024; boost::scoped_array loudest (new Sample[block_size]); boost::scoped_array buf (new Sample[block_size]); assert (fade_length >= 0); assert (min_length > 0); samplepos_t pos = _start; samplepos_t const end = _start + _length; AudioIntervalResult silent_periods; bool in_silence = true; sampleoffset_t silence_start = _start; while (pos < end && !itt.cancel) { samplecnt_t cur_samples = 0; samplecnt_t const to_read = min (end - pos, block_size); /* fill `loudest' with the loudest absolute sample at each instant, across all channels */ memset (loudest.get(), 0, sizeof (Sample) * block_size); for (uint32_t n = 0; n < n_channels(); ++n) { cur_samples = read_raw_internal (buf.get(), pos, to_read, n); for (samplecnt_t i = 0; i < cur_samples; ++i) { loudest[i] = max (loudest[i], abs (buf[i])); } } /* now look for silence */ for (samplecnt_t i = 0; i < cur_samples; ++i) { bool const silence = abs (loudest[i]) < threshold; if (silence && !in_silence) { /* non-silence to silence */ in_silence = true; silence_start = pos + i + fade_length; } else if (!silence && in_silence) { /* silence to non-silence */ in_silence = false; sampleoffset_t silence_end = pos + i - 1 - fade_length; if (silence_end - silence_start >= min_length) { silent_periods.push_back (std::make_pair (silence_start, silence_end)); } } } pos += cur_samples; itt.progress = (end - pos) / (double)_length; if (cur_samples == 0) { assert (pos >= end); break; } } if (in_silence && !itt.cancel) { /* last block was silent, so finish off the last period */ if (end - 1 - silence_start >= min_length + fade_length) { silent_periods.push_back (std::make_pair (silence_start, end - 1)); } } itt.done = true; return silent_periods; } Evoral::Range AudioRegion::body_range () const { return Evoral::Range (first_sample() + _fade_in->back()->when + 1, last_sample() - _fade_out->back()->when); } boost::shared_ptr AudioRegion::get_single_other_xfade_region (bool start) const { boost::shared_ptr pl (playlist()); if (!pl) { /* not currently in a playlist - xfade length is unbounded (and irrelevant) */ return boost::shared_ptr (); } boost::shared_ptr rl; if (start) { rl = pl->regions_at (position()); } else { rl = pl->regions_at (last_sample()); } RegionList::iterator i; boost::shared_ptr other; uint32_t n = 0; /* count and find the other region in a single pass through the list */ for (i = rl->begin(); i != rl->end(); ++i) { if ((*i).get() != this) { other = *i; } ++n; } if (n != 2) { /* zero or multiple regions stacked here - don't care about xfades */ return boost::shared_ptr (); } return other; } samplecnt_t AudioRegion::verify_xfade_bounds (samplecnt_t len, bool start) { /* this is called from a UI to check on whether a new proposed length for an xfade is legal or not. it returns the legal length corresponding to @a len which may be shorter than or equal to @a len itself. */ boost::shared_ptr other = get_single_other_xfade_region (start); samplecnt_t maxlen; if (!other) { /* zero or > 2 regions here, don't care about len, but it can't be longer than the region itself. */ return min (length(), len); } /* we overlap a single region. clamp the length of an xfade to the maximum possible duration of the overlap (if the other region were trimmed appropriately). */ if (start) { maxlen = other->latest_possible_sample() - position(); } else { maxlen = last_sample() - other->earliest_possible_position(); } return min (length(), min (maxlen, len)); }